ASE2010 Applied linear algebra: Homework \#1

1) Linear functions.
a) Show that an inner product function, $f(x)=a^{T} x$, is linear.
b) Show that any scalar-valued linear function $f(x)$ satisfying superposition can be expressed as an inner product function, say $f(x)=a^{T} x$. Explicitly state the elements of a in terms of f.
2) Affine functions.
a) Show that an inner product function plus a shift, $f(x)=a^{T} x+b$, is affine.
b) Show that any scalar-valued affine function $f(x)$ satisfying the restricted superposition can be expressed as an inner product function plus a shift, say $f(x)=a^{T} x+b$. Explicitly state the elements of a and b in terms of f.
3) Parallelogram. Draw two different vectors u and v out from the origin. Complete two more sides to make a parallelogram with diagonals $w=u+v$ and $z=u-v$. Show that $\|w\|^{2}+\|z\|^{2}=2\|u\|^{2}+2\|v\|^{2}$.
4) VMLS Exercises.
a) 2.3 Motion of a mass in response to applied force.
b) 2.12 Price change to maximize profit.
c) $\mathbf{3 . 1 2}$ Nearest point to a line.
