ASE2010 Applied linear algebra: Homework \#3

1) Rotation matrices. Consider a matrix A that describes a rotation by θ, that is,

$$
\underbrace{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]}_{y}=\underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}
$$

a) Explain why $\|y\|=\|x\|$ for any x and θ.
b) Show that the columns of A are orthonormal vectors.
c) Construct a matrix that describes a rotation by $-\theta$?
d) What is A^{T} ? Is it equal to what you obtained from above?
e) Consider a vector x, and suppose that we compute $y=A x$, and then subsequently compute $z=A^{T} y$. What is z ?
f) What is $A+A^{T}$? What does it do? Justify your answer by drawing a picture on a plane to illustrate $x, A x, A^{T} x$, and $\left(A+A^{T}\right) x$
2) VMLS Exercises.
a) 7.1 Projection on a line.
b) $7.23-D$ rotation.
c) 7.3 Trimming a vector.
d) 7.4 Down-sampling and up-conversion.

