ASE2010 Applied linear algebra: Homework \#5

1) Quadratic form. Suppose P is an $n \times n$ matrix. The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as $f(x)=x^{T} P x$ is called a quadratic form, and generalizes the idea of a quadratic function of a scalar variable, $p x^{2}$. The matrix P is called the coefficient matrix of the quadratic form.
a) Show that $f(x)=\sum_{i, j} P_{i j} x_{i} x_{j}$. In words: $f(x)$ is the weighted sum of all products of two components of x, with weights given by the entries of P.
b) Show that for any x, we also have $f(x)=x^{T} P^{T} x$. In other words, the quadratic form associated with the transpose matrix is the same function.
c) Show that f can be expressed as $f(x)=x^{T} P^{\mathrm{s}} x$, where $P^{\mathrm{s}}=(1 / 2)\left(P+P^{T}\right)$ is the symmetric part of P. The matrix P^{s} is symmetric. So any quadratic form can be expressed as one with a coefficient matrix that is symmetric.
d) Express $f(x)=-2 x_{1}^{2}+4 x_{1} x_{2}+2 x^{2}$ in the form $f(x)=x^{T} P x$ with P a symmetric 2×2 matrix.
e) Suppose that A is an $m \times n$ matrix and b is an m-vector. Show that $\|A x-b\|^{2}=$ $x^{T} P x+q^{T} x+r$ for a suitable $n \times n$ symmetric matrix P, n-vector q, and constant r. (Give P, q, and r.) In words: The norm squared of an affine function of x can be expressed as the sum of a quadratic form and an affine function.
2) Matrix identities. Check that the following identities regarding matrix inverses hold. You can assume that X, Y, Z are matrices in appropriate sizes, and a, b are vectors in appropriate sizes. You can also assume that the appearing inverses exist.
a)

$$
Z(I+Z)^{-1}=I-(I+Z)^{-1}
$$

b)

$$
(I+X Y)^{-1}=I-X(I+Y X)^{-1} Y
$$

c)

$$
Y(I+X Y)^{-1}=(I+Y X)^{-1} Y
$$

d)

$$
\left(I+X Z^{-1} Y\right)^{-1}=I-X(Z+Y X)^{-1} Y
$$

e)

$$
\left(X+a b^{T}\right)^{-1}=X^{-1}-\frac{1}{1+b^{T} X^{-1} a} X^{-1} a b^{T} X^{-1}
$$

3) VMLS Exercises.
a) 11.6 Inverse of a block upper triangular matrix.
b) $\mathbf{1 1 . 1 2}$ Combinations of invertible matrices.
c) $\mathbf{1 1 . 1 4 ~ M i d d l e ~ i n v e r s e . ~}$
d) 11.15 Invertibility of population dynamics matrix.
