ASE2010 Applied linear algebra: Homework \#6

1) VMLS Exercises.
a) 12.1 Approximating a vector as a multiple of another one.
b) 12.4 Weighted least squares.
c) $\mathbf{1 2 . 5}$ Approximate right inverse.
d) 12.8 Least squares and $Q R$ factorization.
e) 12.13 Iterative method for least squares problem.
2) Nonnegative least squares. In this problem, we extend the iterative method from $V M L S$ Exercise 12.13 to solve the nonnegative least squares problem (NNLS). We are interested in the following problem.

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-b\|^{2} \\
\text { subject to } & x \geq 0
\end{aligned}
$$

In other words, we want to find the vector x with nonnegative entries that makes $A x$ as close to b as possible.
Your kind professor gives you the detailed instructions for solving this. First set up the problem: generate a random 20×10 matrix A and 20 -vector b, and also let $\mu=1 /\|A\|^{2}$.

```
import numpy as np
np.random.seed (2010)
A = np.random.randn (20,10)
b = np.random.randn(20)
mu = 1/np.linalg.norm(A,'fro')**2
```

a) Set $k=1$ and randomly generate an initial condition $x^{(1)}$.
b) Use the following two-step procedures to compute $x^{(k+1)}$ from $x^{(k)}$. Note that the $(x)_{+}$operator sets every negative entry of x to zero. For example when $x=(0,1,-2,3,4,-5)$, we have $(x)_{+}=(0,1,0,3,4,0)$.

$$
\begin{aligned}
x^{(k+0.5)} & =x^{(k)}-\mu A^{T}\left(A x^{(k)}-b\right) \\
x^{(k+1)} & =\left(x^{(k+0.5)}\right)_{+}
\end{aligned}
$$

c) Terminate the algorithm and return the solution if the amount of the update is sufficiently small $\left(\left\|x^{(k+1)}-x^{(k)}\right\|<10^{-12}\right.$, for example). Otherwise increase k by 1 and go back to step b).

Run this algorithm once and check if every element in your solution is nonnegative. Fix A, b and repeat this numerical experiments several times with different random initial conditions. Check if every trial converges to the same solution (present appropriate plots and numerical results that explain this).

