1. Vectors

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Vectors

- a vector is an ordered list of numbers
- written as

$$
\left[\begin{array}{r}
-1.1 \\
0.0 \\
3.6 \\
-7.2
\end{array}\right] \quad \text { or } \quad\left(\begin{array}{r}
-1.1 \\
0.0 \\
3.6 \\
-7.2
\end{array}\right)
$$

or ($-1.1,0,3.6,-7.2$)

- numbers in the list are the elements (entries, coefficients, components)
- number of elements is the size (dimension, length) of the vector
- vector above has dimension 4; its third entry is 3.6
- vector of size n is called an n-vector
- numbers are called scalars

Vectors via symbols

- we'll use symbols to denote vectors, e.g., $a, X, p, \beta, E^{\text {aut }}$
- other conventions: \mathbf{g}, \vec{a}
- i th element of n-vector a is denoted a_{i}
- if a is vector above, $a_{3}=3.6$
- in a_{i}, i is the index
- for an n-vector, indexes run from $i=1$ to $i=n$
- warning: sometimes a_{i} refers to the i th vector in a list of vectors
- two vectors a and b of the same size are equal if $a_{i}=b_{i}$ for all i
- we overload $=$ and write this as $a=b$

Block vectors

- suppose b, c, and d are vectors with sizes m, n, p
- the stacked vector or concatenation (of b, c, and d) is

$$
a=\left[\begin{array}{l}
b \\
c \\
d
\end{array}\right]
$$

- also called a block vector, with (block) entries b, c, d
- a has size $m+n+p$

$$
a=\left(b_{1}, b_{2}, \ldots, b_{m}, c_{1}, c_{2}, \ldots, c_{n}, d_{1}, d_{2}, \ldots, d_{p}\right)
$$

Zero, ones, and unit vectors

- n-vector with all entries 0 is denoted 0_{n} or just 0
- n-vector with all entries 1 is denoted $\mathbf{1}_{n}$ or just $\mathbf{1}$
- a unit vector has one entry 1 and all others 0
- denoted e_{i} where i is entry that is 1
- unit vectors of length 3 :

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Sparsity

- a vector is sparse if many of its entries are 0
- can be stored and manipulated efficiently on a computer
- $\mathbf{n n z}(x)$ is number of entries that are nonzero
- examples: zero vectors, unit vectors

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Location or displacement in 2-D or 3-D

2 -vector $\left(x_{1}, x_{2}\right)$ can represent a location or a displacement in 2-D

More examples

- color: (R, G, B)
- quantities of n different commodities (or resources), e.g., bill of materials
- portfolio: entries give shares (or \$ value or fraction) held in each of n assets, with negative meaning short positions
- cash flow: x_{i} is payment in period i to us
- audio: x_{i} is the acoustic pressure at sample time i (sample times are spaced $1 / 44100$ seconds apart)
- features: x_{i} is the value of i th feature or attribute of an entity
- customer purchase: x_{i} is the total $\$$ purchase of product i by a customer over some period
- word count: x_{i} is the number of times word i appears in a document

Word count vectors

- a short document:

Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document.

- a small dictionary (left) and word count vector (right)
word
in
number
horse
the
document $\quad\left[\begin{array}{l}3 \\ 2 \\ 1 \\ 0 \\ 4 \\ 2\end{array}\right]$
- dictionaries used in practice are much larger

Outline

Notation
Examples
Addition and scalar multiplication
Inner product
Complexity

Vector addition

- n-vectors a and b can be added, with sum denoted $a+b$
- to get sum, add corresponding entries:

$$
\left[\begin{array}{l}
0 \\
7 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
9 \\
3
\end{array}\right]
$$

- subtraction is similar

Properties of vector addition

- commutative: $a+b=b+a$
- associative: $(a+b)+c=a+(b+c)$ (so we can write both as $a+b+c$)
- $a+0=0+a=a$
- $a-a=0$
these are easy and boring to verify

Adding displacements

if 3-vectors a and b are displacements, $a+b$ is the sum displacement

Displacement from one point to another

displacement from point q to point p is $p-q$

Scalar-vector multiplication

- scalar β and n-vector a can be multiplied

$$
\beta a=\left(\beta a_{1}, \ldots, \beta a_{n}\right)
$$

- also denoted $a \beta$
- example:

$$
(-2)\left[\begin{array}{l}
1 \\
9 \\
6
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-18 \\
-12
\end{array}\right]
$$

Properties of scalar-vector multiplication

- associative: $(\beta \gamma) a=\beta(\gamma a)$
- left distributive: $(\beta+\gamma) a=\beta a+\gamma a$
- right distributive: $\beta(a+b)=\beta a+\beta b$
these equations look innocent, but be sure you understand them perfectly

Linear combinations

- for vectors a_{1}, \ldots, a_{m} and scalars $\beta_{1}, \ldots, \beta_{m}$,

$$
\beta_{1} a_{1}+\cdots+\beta_{m} a_{m}
$$

is a linear combination of the vectors

- $\beta_{1}, \ldots, \beta_{m}$ are the coefficients
- a very important concept
- a simple identity: for any n-vector b,

$$
b=b_{1} e_{1}+\cdots+b_{n} e_{n}
$$

Example

two vectors a_{1} and a_{2}, and linear combination $b=0.75 a_{1}+1.5 a_{2}$

Outline

Notation
 Examples
 Addition and scalar multiplication

Inner product

Complexity

Inner product

- inner product (or dot product) of n-vectors a and b is

$$
a^{T} b=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

- other notation used: $\langle a, b\rangle,\langle a \mid b\rangle,(a, b), a \cdot b$
- example:

$$
\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]^{T}\left[\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right]=(-1)(1)+(2)(0)+(2)(-3)=-7
$$

Properties of inner product

- $a^{T} b=b^{T} a$
- $(\gamma a)^{T} b=\gamma\left(a^{T} b\right)$
- $(a+b)^{T} c=a^{T} c+b^{T} c$
can combine these to get, for example,

$$
(a+b)^{T}(c+d)=a^{T} c+a^{T} d+b^{T} c+b^{T} d
$$

General examples

- $e_{i}^{T} a=a_{i} \quad$ (picks out ith entry)
- $\mathbf{1}^{T} a=a_{1}+\cdots+a_{n} \quad$ (sum of entries)
- $a^{T} a=a_{1}^{2}+\cdots+a_{n}^{2} \quad$ (sum of squares of entries)

