10. Matrix multiplication

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Matrix multiplication

• can multiply $m \times p$ matrix A and $p \times n$ matrix B to get C = AB:

$$C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i1} B_{1j} + \dots + A_{ip} B_{pj}$$

for i = 1, ..., m, j = 1, ..., n

• to get C_{ij} : move along *i*th row of A, *j*th column of B

example:

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x\alpha$
- inner product $a^T b$
- matrix-vector multiplication Ax
- outer product of *m*-vector *a* and *n*-vector *b*

$$ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}$$

Properties

- (AB)C = A(BC), so both can be written ABC
- $\blacktriangleright A(B+C) = AB + AC$
- $\blacktriangleright (AB)^T = B^T A^T$
- AI = A and IA = A
- AB = BA does not hold in general

Block matrices

block matrices can be multiplied using the same formula, e.g.,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

(provided the products all make sense)

Column interpretation

• denote columns of B by b_i :

$$B = \left[\begin{array}{cccc} b_1 & b_2 & \cdots & b_n \end{array} \right]$$

then we have

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$
$$= \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}$$

► so *AB* is 'batch' multiply of *A* times columns of *B*

Multiple sets of linear equations

• given k systems of linear equations, with same $m \times n$ coefficient matrix

$$Ax_i = b_i, \quad i = 1, \ldots, k$$

- write in compact matrix form as AX = B
- $\blacktriangleright X = [x_1 \cdots x_k], B = [b_1 \cdots b_k]$

Inner product interpretation

• with a_i^T the rows of A, b_j the columns of B, we have

$$AB = \begin{bmatrix} a_{1}^{T}b_{1} & a_{1}^{T}b_{2} & \cdots & a_{1}^{T}b_{n} \\ a_{2}^{T}b_{1} & a_{2}^{T}b_{2} & \cdots & a_{2}^{T}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}^{T}b_{1} & a_{m}^{T}b_{2} & \cdots & a_{m}^{T}b_{n} \end{bmatrix}$$

so matrix product is all inner products of rows of A and columns of B, arranged in a matrix

Gram matrix

- let A be an $m \times n$ matrix with columns a_1, \ldots, a_n
- ► the *Gram matrix* of *A* is

$$G = A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}$$

- Gram matrix gives all inner products of columns of A
- example: $G = A^T A = I$ means columns of A are orthonormal

Complexity

- to compute $C_{ij} = (AB)_{ij}$ is inner product of *p*-vectors
- so total required flops is (mn)(2p) = 2mnp flops
- multiplying two 1000×1000 matrices requires 2 billion flops
- ...and can be done in well under a second on current computers

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Introduction to Applied Linear Algebra

Composition of linear functions

- A is an $m \times p$ matrix, B is $p \times n$
- define $f : \mathbf{R}^p \to \mathbf{R}^m$ and $g : \mathbf{R}^n \to \mathbf{R}^p$ as

$$f(u) = Au, \qquad g(v) = Bv$$

- f and g are linear functions
- *composition* of *f* and *g* is $h : \mathbf{R}^n \to \mathbf{R}^m$ with h(x) = f(g(x))
- we have

$$h(x) = f(g(x)) = A(Bx) = (AB)x$$

- composition of linear functions is linear
- associated matrix is product of matrices of the functions

Second difference matrix

• D_n is $(n-1) \times n$ difference matrix:

$$D_n x = (x_2 - x_1, \dots, x_n - x_{n-1})$$

► D_{n-1} is $(n-2) \times (n-1)$ difference matrix:

$$D_n y = (y_2 - y_1, \dots, y_{n-1} - y_{n-2})$$

• $\Delta = D_{n-1}D_n$ is $(n-2) \times n$ second difference matrix:

$$\Delta x = (x_1 - 2x_2 + x_3, x_2 - 2x_3 + x_4, \dots, x_{n-2} - 2x_{n-1} + x_n)$$

• for
$$n = 5$$
, $\Delta = D_{n-1}D_n$ is

$$\begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Introduction to Applied Linear Algebra

Matrix powers

- for A square, A^2 means AA, and same for higher powers
- with convention $A^0 = I$ we have $A^k A^l = A^{k+l}$
- negative powers later; fractional powers in other courses

Directed graph

• $n \times n$ matrix A is adjacency matrix of directed graph:

$$A_{ij} = \begin{cases} 1 & \text{there is a edge from vertex } j \text{ to vertex } i \\ 0 & \text{otherwise} \end{cases}$$

example:

	0	1	0	0	1	
	1	0	1	0	0	
A =	0	0	1	1	1	
	1	0	0	0	0	
	0	0	0	1	1 0 1 0 0	

Paths in directed graph

square of adjacency matrix:

$$(A^2)_{ij} = \sum_{k=1}^n A_{ik} A_{kj}$$

- $(A^2)_{ij}$ is number of paths of length 2 from *j* to *i*
- for the example,

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

e.g., there are two paths from 4 to 3 (via 3 and 5)

• more generally, $(A^{\ell})_{ij}$ = number of paths of length ℓ from *j* to *i*

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Introduction to Applied Linear Algebra

Gram–Schmidt in matrix notation

- run Gram–Schmidt on columns a_1, \ldots, a_k of $n \times k$ matrix A
- if columns are linearly independent, get orthonormal q_1, \ldots, q_k
- define $n \times k$ matrix Q with columns q_1, \ldots, q_k

• $Q^T Q = I$

from Gram–Schmidt algorithm

$$a_{i} = (q_{1}^{T}a_{i})q_{1} + \dots + (q_{i-1}^{T}a_{i})q_{i-1} + \|\tilde{q}_{i}\|q_{i}$$

= $R_{1i}q_{1} + \dots + R_{ii}q_{i}$

with $R_{ij} = q_i^T a_j$ for i < j and $R_{ii} = ||\tilde{q}_i||$

- defining $R_{ij} = 0$ for i > j we have A = QR
- \blacktriangleright *R* is upper triangular, with positive diagonal entries

QR factorization

- A = QR is called *QR factorization* of *A*
- factors satisfy $Q^T Q = I$, R upper triangular with positive diagonal entries
- can be computed using Gram–Schmidt algorithm (or some variations)
- has a huge number of uses, which we'll see soon