10. Matrix multiplication

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Matrix multiplication

- can multiply $m \times p$ matrix A and $p \times n$ matrix B to get $C=A B$:

$$
C_{i j}=\sum_{k=1}^{p} A_{i k} B_{k j}=A_{i 1} B_{1 j}+\cdots+A_{i p} B_{p j}
$$

for $i=1, \ldots, m, j=1, \ldots, n$

- to get $C_{i j}$: move along i th row of A, j th column of B
- example:

$$
\left[\begin{array}{rrr}
-1.5 & 3 & 2 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{rr}
-1 & -1 \\
0 & -2 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
3.5 & -4.5 \\
-1 & 1
\end{array}\right]
$$

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x \alpha$
- inner product $a^{T} b$
- matrix-vector multiplication $A x$
- outer product of m-vector a and n-vector b

$$
a b^{T}=\left[\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{n} \\
a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{n} \\
\vdots & \vdots & & \vdots \\
a_{m} b_{1} & a_{m} b_{2} & \cdots & a_{m} b_{n}
\end{array}\right]
$$

Properties

- $(A B) C=A(B C)$, so both can be written $A B C$
- $A(B+C)=A B+A C$
- $(A B)^{T}=B^{T} A^{T}$
- $A I=A$ and $I A=A$
- $A B=B A$ does not hold in general

Block matrices

block matrices can be multiplied using the same formula, e.g.,

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

(provided the products all make sense)

Column interpretation

- denote columns of B by b_{i} :

$$
B=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right]
$$

- then we have

$$
\begin{aligned}
A B & =A\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
A b_{1} & A b_{2} & \cdots & A b_{n}
\end{array}\right]
\end{aligned}
$$

- so $A B$ is 'batch' multiply of A times columns of B

Multiple sets of linear equations

- given k systems of linear equations, with same $m \times n$ coefficient matrix

$$
A x_{i}=b_{i}, \quad i=1, \ldots, k
$$

- write in compact matrix form as $A X=B$
- $X=\left[\begin{array}{lll}x_{1} & \cdots & x_{k}\end{array}\right], B=\left[\begin{array}{lll}b_{1} & \cdots & b_{k}\end{array}\right]$

Inner product interpretation

- with a_{i}^{T} the rows of A, b_{j} the columns of B, we have

$$
A B=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{n} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{n} \\
\vdots & \vdots & & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{n}
\end{array}\right]
$$

- so matrix product is all inner products of rows of A and columns of B, arranged in a matrix

Gram matrix

- let A be an $m \times n$ matrix with columns a_{1}, \ldots, a_{n}
- the Gram matrix of A is

$$
G=A^{T} A=\left[\begin{array}{cccc}
a_{1}^{T} a_{1} & a_{1}^{T} a_{2} & \cdots & a_{1}^{T} a_{n} \\
a_{2}^{T} a_{1} & a_{2}^{T} a_{2} & \cdots & a_{2}^{T} a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{T} a_{1} & a_{n}^{T} a_{2} & \cdots & a_{n}^{T} a_{n}
\end{array}\right]
$$

- Gram matrix gives all inner products of columns of A
- example: $G=A^{T} A=I$ means columns of A are orthonormal

Complexity

- to compute $C_{i j}=(A B)_{i j}$ is inner product of p-vectors
- so total required flops is $(m n)(2 p)=2 m n p$ flops
- multiplying two 1000×1000 matrices requires 2 billion flops
- ... and can be done in well under a second on current computers

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Composition of linear functions

- A is an $m \times p$ matrix, B is $p \times n$
- define $f: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m}$ and $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ as

$$
f(u)=A u, \quad g(v)=B v
$$

- f and g are linear functions
- composition of f and g is $h: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ with $h(x)=f(g(x))$
- we have

$$
h(x)=f(g(x))=A(B x)=(A B) x
$$

- composition of linear functions is linear
- associated matrix is product of matrices of the functions

Second difference matrix

- D_{n} is $(n-1) \times n$ difference matrix:

$$
D_{n} x=\left(x_{2}-x_{1}, \ldots, x_{n}-x_{n-1}\right)
$$

- D_{n-1} is $(n-2) \times(n-1)$ difference matrix:

$$
D_{n} y=\left(y_{2}-y_{1}, \ldots, y_{n-1}-y_{n-2}\right)
$$

- $\Delta=D_{n-1} D_{n}$ is $(n-2) \times n$ second difference matrix:

$$
\Delta x=\left(x_{1}-2 x_{2}+x_{3}, x_{2}-2 x_{3}+x_{4}, \ldots, x_{n-2}-2 x_{n-1}+x_{n}\right)
$$

- for $n=5, \Delta=D_{n-1} D_{n}$ is

$$
\left[\begin{array}{rrrrr}
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Matrix powers

- for A square, A^{2} means $A A$, and same for higher powers
- with convention $A^{0}=I$ we have $A^{k} A^{l}=A^{k+l}$
- negative powers later; fractional powers in other courses

Directed graph

- $n \times n$ matrix A is adjacency matrix of directed graph:

$$
A_{i j}= \begin{cases}1 & \text { there is a edge from vertex } j \text { to vertex } i \\ 0 & \text { otherwise }\end{cases}
$$

- example:

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Paths in directed graph

- square of adjacency matrix:

$$
\left(A^{2}\right)_{i j}=\sum_{k=1}^{n} A_{i k} A_{k j}
$$

- $\left(A^{2}\right)_{i j}$ is number of paths of length 2 from j to i
- for the example,

$$
A^{2}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 2 \\
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

e.g., there are two paths from 4 to 3 (via 3 and 5)

- more generally, $\left(A^{\ell}\right)_{i j}=$ number of paths of length ℓ from j to i

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Gram-Schmidt in matrix notation

- run Gram-Schmidt on columns a_{1}, \ldots, a_{k} of $n \times k$ matrix A
- if columns are linearly independent, get orthonormal q_{1}, \ldots, q_{k}
- define $n \times k$ matrix Q with columns q_{1}, \ldots, q_{k}
- $Q^{T} Q=I$
- from Gram-Schmidt algorithm

$$
\begin{aligned}
a_{i} & =\left(q_{1}^{T} a_{i}\right) q_{1}+\cdots+\left(q_{i-1}^{T} a_{i}\right) q_{i-1}+\left\|\tilde{q}_{i}\right\| q_{i} \\
& =R_{1 i} q_{1}+\cdots+R_{i i} q_{i}
\end{aligned}
$$

with $R_{i j}=q_{i}^{T} a_{j}$ for $i<j$ and $R_{i i}=\left\|\tilde{q}_{i}\right\|$

- defining $R_{i j}=0$ for $i>j$ we have $A=Q R$
- R is upper triangular, with positive diagonal entries

QR factorization

- $A=Q R$ is called $Q R$ factorization of A
- factors satisfy $Q^{T} Q=I, R$ upper triangular with positive diagonal entries
- can be computed using Gram-Schmidt algorithm (or some variations)
- has a huge number of uses, which we'll see soon

