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Left inverses

I a number x that satisfies xa = 1 is called the inverse of a

I inverse (i.e., 1/a) exists if and only if a , 0, and is unique

I a matrix X that satisfies XA = I is called a left inverse of A

I if a left inverse exists we say that A is left-invertible

I example: the matrix

A =

2666664
�3 �4

4 6
1 1

3777775
has two di�erent left inverses:

B =
1
9

"
�11 �10 16

7 8 �11

#
, C =

1
2

"
0 �1 6
0 1 �4

#
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Left inverse and column independence

I if A has a left inverse C then the columns of A are linearly independent

I to see this: if Ax = 0 and CA = I then

0 = C0 = C(Ax) = (CA)x = Ix = x

I we’ll see later the converse is also true, so
a matrix is left-invertible if and only if its columns are linearly independent

I matrix generalization of
a number is invertible if and only if it is nonzero

I so left-invertible matrices are tall or square
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Solving linear equations with a left inverse

I suppose Ax = b, and A has a left inverse C

I then Cb = C(Ax) = (CA)x = Ix = x

I so multiplying the right-hand side by a left inverse yields the solution
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Example

A =

2666664
�3 �4

4 6
1 1

3777775
, b =

2666664
1
�2
0

3777775
I over-determined equations Ax = b have (unique) solution x = (1,�1)
I A has two di�erent left inverses,

B =
1
9

"
�11 �10 16

7 8 �11

#
, C =

1
2

"
0 �1 6
0 1 �4

#

I multiplying the right-hand side with the left inverse B we get

Bb =

"
1
�1

#

I and also
Cb =

"
1
�1

#
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Right inverses

I a matrix X that satisfies AX = I is a right inverse of A

I if a right inverse exists we say that A is right-invertible

I A is right-invertible if and only if A
T is left-invertible:

AX = I () (AX)T = I () X
T

A
T = I

I so we conclude
A is right-invertible if and only if its rows are linearly independent

I right-invertible matrices are wide or square
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Solving linear equations with a right inverse

I suppose A has a right inverse B

I consider the (square or underdetermined) equations Ax = b

I x = Bb is a solution:

Ax = A(Bb) = (AB)b = Ib = b

I so Ax = b has a solution for any b
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Example

I same A, B, C in example above

I C
T and B

T are both right inverses of A
T

I under-determined equations A
T

x = (1,2) has (di�erent) solutions

B
T (1,2) = (1/3,2/3,�2/3), C

T (1,2) = (0,1/2,�1)

(there are many other solutions as well)
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Inverse

I if A has a left and a right inverse, they are unique and equal
(and we say that A is invertible)

I so A must be square

I to see this: if AX = I, YA = I

X = IX = (YA)X = Y (AX) = YI = Y

I we denote them by A
�1:

A
�1

A = AA
�1 = I

I inverse of inverse: (A�1)�1 = A
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Solving square systems of linear equations

I suppose A is invertible

I for any b, Ax = b has the unique solution

x = A
�1

b

I matrix generalization of simple scalar equation ax = b having solution
x = (1/a)b (for a , 0)

I simple-looking formula x = A
�1

b is basis for many applications
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Invertible matrices

the following are equivalent for a square matrix A:

I A is invertible

I columns of A are linearly independent

I rows of A are linearly independent

I A has a left inverse

I A has a right inverse

if any of these hold, all others do
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Examples

I I
�1 = I

I if Q is orthogonal, i.e., square with Q
T

Q = I, then Q
�1 = Q

T

I 2 ⇥ 2 matrix A is invertible if and only A11A22 , A12A21

A
�1 =

1
A11A22 � A12A21

"
A22 �A12
�A21 A11

#

– you need to know this formula
– there are similar but much more complicated formulas for larger matrices

(and no, you do not need to know them)
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Non-obvious example

A =

2666664
1 �2 3
0 2 2
�3 �4 �4

3777775
I A is invertible, with inverse

A
�1 =

1
30

2666664
0 �20 �10
�6 5 �2

6 10 2

3777775
.

I verified by checking AA
�1 = I (or A

�1
A = I)

I we’ll soon see how to compute the inverse
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Properties

I (AB)�1 = B
�1

A
�1 (provided inverses exist)

I (AT )�1 = (A�1)T (sometimes denoted A
�T )

I negative matrix powers: (A�1)k is denoted A
�k

I with A
0 = I, identity A

k
A

l = A
k+l holds for any integers k, l
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Triangular matrices

I lower triangular L with nonzero diagonal entries is invertible

I so see this, write Lx = 0 as

L11x1 = 0
L21x1 + L22x2 = 0

...
Ln1x1 + Ln2x2 + · · · + Ln,n�1xn�1 + Lnnxn = 0

– from first equation, x1 = 0 (since L11 , 0)
– second equation reduces to L22x2 = 0, so x2 = 0 (since L22 , 0)
– and so on

this shows columns of L are linearly independent, so L is invertible

I upper triangular R with nonzero diagonal entries is invertible
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Inverse via QR factorization

I suppose A is square and invertible

I so its columns are linearly independent

I so Gram–Schmidt gives QR factorization
– A = QR

– Q is orthogonal: Q
T

Q = I

– R is upper triangular with positive diagonal entries, hence invertible

I so we have
A
�1 = (QR)�1 = R

�1
Q
�1 = R

�1
Q

T
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Back substitution

I suppose R is upper triangular with nonzero diagonal entries

I write out Rx = b as

R11x1 + R12x2 + · · · + R1,n�1xn�1 + R1nxn = b1

...

Rn�1,n�1xn�1 + Rn�1,nxn = bn�1

Rnnxn = bn

I from last equation we get xn = bn/Rnn

I from 2nd to last equation we get

xn�1 = (bn�1 � Rn�1,nxn)/Rn�1,n�1

I continue to get xn�2,xn�3, . . . ,x1
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Back substitution

I called back substitution since we find the variables in reverse order,
substituting the already known values of xi

I computes x = R
�1

b

I complexity:
– first step requires 1 flop (division)
– 2nd step needs 3 flops
– ith step needs 2i � 1 flops

total is 1 + 3 + · · · + (2n � 1) = n
2 flops
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Solving linear equations via QR factorization

I assuming A is invertible, let’s solve Ax = b, i.e., compute x = A
�1

b

I with QR factorization A = QR, we have

A
�1 = (QR)�1 = R

�1
Q

T

I compute x = R
�1(QT

b) by back substitution
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Solving linear equations via QR factorization

given an n ⇥ n invertible matrix A and an n-vector b

1. QR factorization: compute the QR factorization A = QR

2. compute Q
T

b.
3. Back substitution: Solve the triangular equation Rx = Q

T
b using back

substitution

I complexity 2n
3 (step 1), 2n

2 (step 2), n
2 (step 3)

I total is 2n
3 + 3n

2 ⇡ 2n
3
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Multiple right-hand sides

I let’s solve Axi = bi, i = 1, . . . ,k, with A invertible

I carry out QR factorization once (2n
3 flops)

I for i = 1, . . . ,k, solve Rxi = Q
T

bi via back substitution (3kn
2 flops)

I total is 2n
3 + 3kn

2 flops

I if k is small compared to n, same cost as solving one set of equations
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Polynomial interpolation

I let’s find coe�cients of a cubic polynomial

p(x) = c1 + c2x + c3x
2 + c4x

3

that satisfies

p(�1.1) = b1, p(�0.4) = b2, p(0.1) = b3, p(0.8) = b4

I write as Ac = b, with

A =

2666666664

1 �1.1 (�1.1)2 (�1.1)3

1 �0.4 (�0.4)2 (�0.4)3

1 0.1 (0.1)2 (0.1)3

1 0.8 (0.8)2 (0.8)3

3777777775
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Polynomial interpolation

I (unique) coe�cients given by c = A
�1

b, with

A
�1 =

266666664

�0.0370 0.3492 0.7521 �0.0643
0.1388 �1.8651 1.6239 0.1023
0.3470 0.1984 �1.4957 0.9503
�0.5784 1.9841 �2.1368 0.7310

377777775
I so, e.g., c1 is not very sensitive to b1 or b4

I first column gives coe�cients of polynomial that satisfies

p(�1.1) = 1, p(�0.4) = 0, p(0.1) = 0, p(0.8) = 0

called (first) Lagrange polynomial
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Example

�1.5 �1 �0.5 0 0.5 1
x

p(x)
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Lagrange polynomials

Lagrange polynomials associated with points �1.1, �0.4, 0.2, 0.8

�1 0 1

0

1

�1 0 1

0

1

�1 0 1

0

1

�1 0 1

0

1
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Invertibility of Gram matrix

I A has linearly independent columns if and only if A
T

A is invertible

I to see this, we’ll show that Ax = 0, A
T

Ax = 0

I ): if Ax = 0 then (AT
A)x = A

T (Ax) = A
T0 = 0

I (: if (AT
A)x = 0 then

0 = x
T (AT

A)x = (Ax)T (Ax) = kAxk2 = 0

so Ax = 0
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Pseudo-inverse of tall matrix

I the pseudo-inverse of A with independent columns is

A
† = (AT

A)�1
A

T

I it is a left inverse of A:

A
†
A = (AT

A)�1
A

T
A = (AT

A)�1(AT
A) = I

(we’ll soon see that it’s a very important left inverse of A)

I reduces to A
�1 when A is square:

A
† = (AT

A)�1
A

T = A
�1

A
�T

A
T = A

�1
I = A

�1
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Pseudo-inverse of wide matrix

I if A is wide, with linearly independent rows, AA
T is invertible

I pseudo-inverse is defined as

A
† = A

T (AA
T )�1

I A
† is a right inverse of A:

AA
† = AA

T (AA
T )�1 = I

(we’ll see later it is an important right inverse)

I reduces to A
�1 when A is square:

A
T (AA

T )�1 = A
T

A
�T

A
�1 = A

�1
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Pseudo-inverse via QR factorization

I suppose A has linearly independent columns, A = QR

I then A
T

A = (QR)T (QR) = R
T

Q
T

QR = R
T

R

I so

A
† = (AT

A)�1
A

T = (RT
R)�1(QR)T = R

�1
R
�T

R
T

Q
T = R

�1
Q

T

I can compute A
† using back substitution on columns of Q

T

I for A with linearly independent rows, A
† = QR

�T
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