11. Matrix inverses

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Left inverses

- a number x that satisfies $x a=1$ is called the inverse of a
- inverse (i.e., $1 / a$) exists if and only if $a \neq 0$, and is unique
- a matrix X that satisfies $X A=I$ is called a left inverse of A
- if a left inverse exists we say that A is left-invertible
- example: the matrix

$$
A=\left[\begin{array}{rr}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{array}\right]
$$

has two different left inverses:

$$
B=\frac{1}{9}\left[\begin{array}{rrr}
-11 & -10 & 16 \\
7 & 8 & -11
\end{array}\right], \quad C=\frac{1}{2}\left[\begin{array}{rrr}
0 & -1 & 6 \\
0 & 1 & -4
\end{array}\right]
$$

Left inverse and column independence

- if A has a left inverse C then the columns of A are linearly independent
- to see this: if $A x=0$ and $C A=I$ then

$$
0=C 0=C(A x)=(C A) x=I x=x
$$

- we'll see later the converse is also true, so
a matrix is left-invertible if and only if its columns are linearly independent
- matrix generalization of
a number is invertible if and only if it is nonzero
- so left-invertible matrices are tall or square

Solving linear equations with a left inverse

- suppose $A x=b$, and A has a left inverse C
- then $C b=C(A x)=(C A) x=I x=x$
- so multiplying the right-hand side by a left inverse yields the solution

Example

$$
A=\left[\begin{array}{rr}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]
$$

- over-determined equations $A x=b$ have (unique) solution $x=(1,-1)$
- A has two different left inverses,

$$
B=\frac{1}{9}\left[\begin{array}{rrr}
-11 & -10 & 16 \\
7 & 8 & -11
\end{array}\right], \quad C=\frac{1}{2}\left[\begin{array}{rrr}
0 & -1 & 6 \\
0 & 1 & -4
\end{array}\right]
$$

- multiplying the right-hand side with the left inverse B we get

$$
B b=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- and also

$$
C b=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Right inverses

- a matrix X that satisfies $A X=I$ is a right inverse of A
- if a right inverse exists we say that A is right-invertible
- A is right-invertible if and only if A^{T} is left-invertible:

$$
A X=I \Longleftrightarrow(A X)^{T}=I \Longleftrightarrow X^{T} A^{T}=I
$$

- so we conclude

A is right-invertible if and only if its rows are linearly independent

- right-invertible matrices are wide or square

Solving linear equations with a right inverse

- suppose A has a right inverse B
- consider the (square or underdetermined) equations $A x=b$
- $x=B b$ is a solution:

$$
A x=A(B b)=(A B) b=I b=b
$$

- so $A x=b$ has a solution for any b

Example

- same A, B, C in example above
- C^{T} and B^{T} are both right inverses of A^{T}
- under-determined equations $A^{T} x=(1,2)$ has (different) solutions

$$
B^{T}(1,2)=(1 / 3,2 / 3,-2 / 3), \quad C^{T}(1,2)=(0,1 / 2,-1)
$$

(there are many other solutions as well)

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Inverse

- if A has a left and a right inverse, they are unique and equal (and we say that A is invertible)
- so A must be square
- to see this: if $A X=I, Y A=I$

$$
X=I X=(Y A) X=Y(A X)=Y I=Y
$$

- we denote them by A^{-1} :

$$
A^{-1} A=A A^{-1}=I
$$

- inverse of inverse: $\left(A^{-1}\right)^{-1}=A$

Solving square systems of linear equations

- suppose A is invertible
- for any $b, A x=b$ has the unique solution

$$
x=A^{-1} b
$$

- matrix generalization of simple scalar equation $a x=b$ having solution $x=(1 / a) b$ (for $a \neq 0)$
- simple-looking formula $x=A^{-1} b$ is basis for many applications

Invertible matrices

the following are equivalent for a square matrix A :

- A is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- A has a left inverse
- A has a right inverse
if any of these hold, all others do

Examples

- $I^{-1}=I$
- if Q is orthogonal, i.e., square with $Q^{T} Q=I$, then $Q^{-1}=Q^{T}$
- 2×2 matrix A is invertible if and only $A_{11} A_{22} \neq A_{12} A_{21}$

$$
A^{-1}=\frac{1}{A_{11} A_{22}-A_{12} A_{21}}\left[\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right]
$$

- you need to know this formula
- there are similar but much more complicated formulas for larger matrices (and no, you do not need to know them)

Non-obvious example

$$
A=\left[\begin{array}{rrr}
1 & -2 & 3 \\
0 & 2 & 2 \\
-3 & -4 & -4
\end{array}\right]
$$

- A is invertible, with inverse

$$
A^{-1}=\frac{1}{30}\left[\begin{array}{rrr}
0 & -20 & -10 \\
-6 & 5 & -2 \\
6 & 10 & 2
\end{array}\right]
$$

- verified by checking $A A^{-1}=I\left(\right.$ or $\left.A^{-1} A=I\right)$
- we'll soon see how to compute the inverse

Properties

- $(A B)^{-1}=B^{-1} A^{-1}$ (provided inverses exist)
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ (sometimes denoted $\left.A^{-T}\right)$
- negative matrix powers: $\left(A^{-1}\right)^{k}$ is denoted A^{-k}
- with $A^{0}=I$, identity $A^{k} A^{l}=A^{k+l}$ holds for any integers k, l

Triangular matrices

- lower triangular L with nonzero diagonal entries is invertible
- so see this, write $L x=0$ as

$$
\begin{array}{lc}
L_{11} x_{1} & =0 \\
L_{21} x_{1}+L_{22} x_{2} & =0 \\
& \vdots \\
L_{n 1} x_{1}+L_{n 2} x_{2}+\cdots+L_{n, n-1} x_{n-1}+L_{n n} x_{n} & =0
\end{array}
$$

- from first equation, $x_{1}=0$ (since $L_{11} \neq 0$)
- second equation reduces to $L_{22} x_{2}=0$, so $x_{2}=0\left(\right.$ since $\left.L_{22} \neq 0\right)$
- and so on
this shows columns of L are linearly independent, so L is invertible
- upper triangular R with nonzero diagonal entries is invertible

Inverse via QR factorization

- suppose A is square and invertible
- so its columns are linearly independent
- so Gram-Schmidt gives QR factorization
$-A=Q R$
- Q is orthogonal: $Q^{T} Q=I$
- R is upper triangular with positive diagonal entries, hence invertible
- so we have

$$
A^{-1}=(Q R)^{-1}=R^{-1} Q^{-1}=R^{-1} Q^{T}
$$

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Back substitution

- suppose R is upper triangular with nonzero diagonal entries
- write out $R x=b$ as

$$
\begin{aligned}
R_{11} x_{1}+R_{12} x_{2}+\cdots+R_{1, n-1} x_{n-1}+R_{1 n} x_{n} & =b_{1} \\
& \vdots \\
R_{n-1, n-1} x_{n-1}+R_{n-1, n} x_{n} & =b_{n-1} \\
R_{n n} x_{n} & =b_{n}
\end{aligned}
$$

- from last equation we get $x_{n}=b_{n} / R_{n n}$
- from 2nd to last equation we get

$$
x_{n-1}=\left(b_{n-1}-R_{n-1, n} x_{n}\right) / R_{n-1, n-1}
$$

- continue to get $x_{n-2}, x_{n-3}, \ldots, x_{1}$

Back substitution

- called back substitution since we find the variables in reverse order, substituting the already known values of x_{i}
- computes $x=R^{-1} b$
- complexity:
- first step requires 1 flop (division)
- 2nd step needs 3 flops
- i th step needs $2 i-1$ flops
total is $1+3+\cdots+(2 n-1)=n^{2}$ flops

Solving linear equations via QR factorization

- assuming A is invertible, let's solve $A x=b$, i.e., compute $x=A^{-1} b$
- with $Q R$ factorization $A=Q R$, we have

$$
A^{-1}=(Q R)^{-1}=R^{-1} Q^{T}
$$

- compute $x=R^{-1}\left(Q^{T} b\right)$ by back substitution

Solving linear equations via QR factorization

given an $n \times n$ invertible matrix A and an n-vector b

1. $Q R$ factorization: compute the $Q R$ factorization $A=Q R$
2. compute $Q^{T} b$.
3. Back substitution: Solve the triangular equation $R x=Q^{T} b$ using back substitution

- complexity $2 n^{3}$ (step 1$), 2 n^{2}$ (step 2$), n^{2}$ (step 3$)$
- total is $2 n^{3}+3 n^{2} \approx 2 n^{3}$

Multiple right-hand sides

- let's solve $A x_{i}=b_{i}, i=1, \ldots, k$, with A invertible
- carry out QR factorization once ($2 n^{3}$ flops)
- for $i=1, \ldots, k$, solve $R x_{i}=Q^{T} b_{i}$ via back substitution ($3 k n^{2}$ flops)
- total is $2 n^{3}+3 k n^{2}$ flops
- if k is small compared to n, same cost as solving one set of equations

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Polynomial interpolation

- let's find coefficients of a cubic polynomial

$$
p(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}
$$

that satisfies

$$
p(-1.1)=b_{1}, \quad p(-0.4)=b_{2}, \quad p(0.1)=b_{3}, \quad p(0.8)=b_{4}
$$

- write as $A c=b$, with

$$
A=\left[\begin{array}{cccc}
1 & -1.1 & (-1.1)^{2} & (-1.1)^{3} \\
1 & -0.4 & (-0.4)^{2} & (-0.4)^{3} \\
1 & 0.1 & (0.1)^{2} & (0.1)^{3} \\
1 & 0.8 & (0.8)^{2} & (0.8)^{3}
\end{array}\right]
$$

Polynomial interpolation

- (unique) coefficients given by $c=A^{-1} b$, with

$$
A^{-1}=\left[\begin{array}{rrrr}
-0.0370 & 0.3492 & 0.7521 & -0.0643 \\
0.1388 & -1.8651 & 1.6239 & 0.1023 \\
0.3470 & 0.1984 & -1.4957 & 0.9503 \\
-0.5784 & 1.9841 & -2.1368 & 0.7310
\end{array}\right]
$$

- so, e.g., c_{1} is not very sensitive to b_{1} or b_{4}
- first column gives coefficients of polynomial that satisfies

$$
p(-1.1)=1, \quad p(-0.4)=0, \quad p(0.1)=0, \quad p(0.8)=0
$$

called (first) Lagrange polynomial

Example

Lagrange polynomials

Lagrange polynomials associated with points $-1.1,-0.4,0.2,0.8$

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Invertibility of Gram matrix

- A has linearly independent columns if and only if $A^{T} A$ is invertible
- to see this, we'll show that $A x=0 \Leftrightarrow A^{T} A x=0$
- \Rightarrow : if $A x=0$ then $\left(A^{T} A\right) x=A^{T}(A x)=A^{T} 0=0$
- $\Leftarrow:$ if $\left(A^{T} A\right) x=0$ then

$$
0=x^{T}\left(A^{T} A\right) x=(A x)^{T}(A x)=\|A x\|^{2}=0
$$

so $A x=0$

Pseudo-inverse of tall matrix

- the pseudo-inverse of A with independent columns is

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

- it is a left inverse of A :

$$
A^{\dagger} A=\left(A^{T} A\right)^{-1} A^{T} A=\left(A^{T} A\right)^{-1}\left(A^{T} A\right)=I
$$

(we'll soon see that it's a very important left inverse of A)

- reduces to A^{-1} when A is square:

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}=A^{-1} A^{-T} A^{T}=A^{-1} I=A^{-1}
$$

Pseudo-inverse of wide matrix

- if A is wide, with linearly independent rows, $A A^{T}$ is invertible
- pseudo-inverse is defined as

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

- A^{\dagger} is a right inverse of A :

$$
A A^{\dagger}=A A^{T}\left(A A^{T}\right)^{-1}=I
$$

(we'll see later it is an important right inverse)

- reduces to A^{-1} when A is square:

$$
A^{T}\left(A A^{T}\right)^{-1}=A^{T} A^{-T} A^{-1}=A^{-1}
$$

Pseudo-inverse via QR factorization

- suppose A has linearly independent columns, $A=Q R$
- then $A^{T} A=(Q R)^{T}(Q R)=R^{T} Q^{T} Q R=R^{T} R$
- so

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}=\left(R^{T} R\right)^{-1}(Q R)^{T}=R^{-1} R^{-T} R^{T} Q^{T}=R^{-1} Q^{T}
$$

- can compute A^{\dagger} using back substitution on columns of Q^{T}
- for A with linearly independent rows, $A^{\dagger}=Q R^{-T}$

