12. Least squares

Outline

Least squares problem

Solution of least squares problem

Examples

Least squares problem

- suppose $m \times n$ matrix A is tall, so Ax = b is over-determined
- for most choices of *b*, there is no *x* that satisfies Ax = b
- residual is r = Ax b
- *least squares problem*: choose *x* to minimize $||Ax b||^2$
- $||Ax b||^2$ is the *objective function*
- \hat{x} is a *solution* of least squares problem if

$$||A\hat{x} - b||^2 \le ||Ax - b||^2$$

for any *n*-vector *x*

- idea: \hat{x} makes residual as small as possible, if not 0
- also called *regression* (in data fitting context)

Least squares problem

- \hat{x} called *least squares approximate solution* of Ax = b
- \hat{x} is sometimes called 'solution of Ax = b in the least squares sense'
 - this is very confusing
 - never say this
 - do not associate with people who say this

- \hat{x} need not (and usually does not) satisfy $A\hat{x} = b$
- but if \hat{x} does satisfy $A\hat{x} = b$, then it solves least squares problem

Column interpretation

- suppose a_1, \ldots, a_n are columns of A
- then

$$||Ax - b||^2 = ||(x_1a_1 + \dots + x_na_n) - b||^2$$

- so least squares problem is to find a linear combination of columns of A that is closest to b
- if \hat{x} is a solution of least squares problem, the *m*-vector

$$A\hat{x} = \hat{x}_1 a_1 + \dots + \hat{x}_n a_n$$

is closest to b among all linear combinations of columns of A

Row interpretation

- suppose $\tilde{a}_1^T, \ldots, \tilde{a}_m^T$ are rows of *A*
- residual components are $r_i = \tilde{a}_i^T x b_i$
- least squares objective is

$$||Ax - b||^{2} = (\tilde{a}_{1}^{T}x - b_{1})^{2} + \dots + (\tilde{a}_{m}^{T}x - b_{m})^{2}$$

the sum of squares of the residuals

- so least squares minimizes sum of squares of residuals
 - solving Ax = b is making all residuals zero
 - least squares attempts to make them all small

Example

least squares problem is to choose x to minimize

$$||Ax - b||^{2} = (2x_{1} - 1)^{2} + (-x_{1} + x_{2})^{2} + (2x_{2} + 1)^{2}$$

- ► least squares approximate solution is $\hat{x} = (1/3, -1/3)$ (say, via calculus)
- $||A\hat{x} b||^2 = 2/3$ is smallest possible value of $||Ax b||^2$
- $A\hat{x} = (2/3, -2/3, -2/3)$ is linear combination of columns of A closest to b

Outline

Least squares problem

Solution of least squares problem

Examples

Solution of least squares problem

- we make one assumption: A has linearly independent columns
- this implies that Gram matrix $A^T A$ is invertible
- unique solution of least squares problem is

$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b$$

• cf. $x = A^{-1}b$, solution of square invertible system Ax = b

Derivation via calculus

define

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2$$

• solution \hat{x} satisfies

$$\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n$$

- taking partial derivatives we get $\nabla f(x)_k = (2A^T(Ax b))_k$
- in matrix-vector notation: $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- ► so \hat{x} satisfies normal equations $(A^T A)\hat{x} = A^T b$
- and therefore $\hat{x} = (A^T A)^{-1} A^T b$

Direct verification

• let
$$\hat{x} = (A^T A)^{-1} A^T b$$
, so $A^T (A \hat{x} - b) = 0$

► for any *n*-vector *x* we have

$$\begin{aligned} \|Ax - b\|^2 &= \|(Ax - A\hat{x}) + (A\hat{x} - b)\|^2 \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(A(x - \hat{x}))^T (A\hat{x} - b) \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(x - \hat{x})^T A^T (A\hat{x} - b) \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 \end{aligned}$$

• so for any x, $||Ax - b||^2 \ge ||A\hat{x} - b||^2$

► if equality holds, A(x - x̂) = 0, which implies x = x̂ since columns of A are linearly independent

Computing least squares approximate solutions

- compute QR factorization of A: A = QR (2mn² flops)
- QR factorization exists since columns of A are linearly independent

• to compute
$$\hat{x} = A^{\dagger}b = R^{-1}Q^{T}b$$

- form $Q^T b$ (2mn flops)
- compute $\hat{x} = R^{-1}(Q^T b)$ via back substitution (n^2 flops)
- total complexity $2mn^2$ flops
- identical to algorithm for solving Ax = b for square invertible A
- but when A is tall, gives least squares approximate solution

Outline

Least squares problem

Solution of least squares problem

Examples

Advertising purchases

- *m* demographics groups we want to advertise to
- v^{des} is *m*-vector of target views or impressions
- *n*-vector *s* gives spending on *n* advertising channels
- $m \times n$ matrix R gives demographic reach of channels
- R_{ij} is number of views per dollar spent (in 1000/\$)
- v = Rs is *m*-vector of views across demographic groups
- ▶ $||v^{\text{des}} Rs|| / \sqrt{m}$ is RMS deviation from desired views
- we'll use least squares spending $\hat{s} = R^{\dagger} v^{\text{des}}$ (need not be ≥ 0)

Example

- m = 10 groups, n = 3 channels
- target views vector $v^{\text{des}} = 10^3 \times \mathbf{1}$
- optimal spending is $\hat{s} = (62, 100, 1443)$

Illumination

- n lamps illuminate an area divided in m regions
- A_{ij} is illumination in region *i* if lamp *j* is on with power 1, other lamps are off
- x_j is power of lamp j
- $(Ax)_i$ is illumination level at region *i*
- b_i is target illumination level at region i

figure shows lamp positions for example with

$$m = 25^2, \quad n = 10$$

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Illumination

• equal lamp powers (x = 1)

• least squares solution \hat{x} , with $b = \mathbf{1}$

Introduction to Applied Linear Algebra

