12. Least squares

Outline

Least squares problem

Solution of least squares problem

Examples

Least squares problem

- suppose $m \times n$ matrix A is tall, so $A x=b$ is over-determined
- for most choices of b, there is no x that satisfies $A x=b$
- residual is $r=A x-b$
- least squares problem: choose x to minimize $\|A x-b\|^{2}$
- $\|A x-b\|^{2}$ is the objective function
- \hat{x} is a solution of least squares problem if

$$
\|A \hat{x}-b\|^{2} \leq\|A x-b\|^{2}
$$

for any n-vector x

- idea: \hat{x} makes residual as small as possible, if not 0
- also called regression (in data fitting context)

Least squares problem

- \hat{x} called least squares approximate solution of $A x=b$
- \hat{x} is sometimes called 'solution of $A x=b$ in the least squares sense'
- this is very confusing
- never say this
- do not associate with people who say this
- \hat{x} need not (and usually does not) satisfy $A \hat{x}=b$
- but if \hat{x} does satisfy $A \hat{x}=b$, then it solves least squares problem

Column interpretation

- suppose a_{1}, \ldots, a_{n} are columns of A
- then

$$
\|A x-b\|^{2}=\left\|\left(x_{1} a_{1}+\cdots+x_{n} a_{n}\right)-b\right\|^{2}
$$

- so least squares problem is to find a linear combination of columns of A that is closest to b
- if \hat{x} is a solution of least squares problem, the m-vector

$$
A \hat{x}=\hat{x}_{1} a_{1}+\cdots+\hat{x}_{n} a_{n}
$$

is closest to b among all linear combinations of columns of A

Row interpretation

- suppose $\tilde{a}_{1}^{T}, \ldots, \tilde{a}_{m}^{T}$ are rows of A
- residual components are $r_{i}=\tilde{a}_{i}^{T} x-b_{i}$
- least squares objective is

$$
\|A x-b\|^{2}=\left(\tilde{a}_{1}^{T} x-b_{1}\right)^{2}+\cdots+\left(\tilde{a}_{m}^{T} x-b_{m}\right)^{2}
$$

the sum of squares of the residuals

- so least squares minimizes sum of squares of residuals
- solving $A x=b$ is making all residuals zero
- least squares attempts to make them all small

Example

$$
A=\left[\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

- $A x=b$ has no solution

- least squares problem is to choose x to minimize

$$
\|A x-b\|^{2}=\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}
$$

- least squares approximate solution is $\hat{x}=(1 / 3,-1 / 3)$ (say, via calculus)
- $\|A \hat{x}-b\|^{2}=2 / 3$ is smallest posible value of $\|A x-b\|^{2}$
- $A \hat{x}=(2 / 3,-2 / 3,-2 / 3)$ is linear combination of columns of A closest to b

Outline

Least squares problem

Solution of least squares problem

Examples

Solution of least squares problem

- we make one assumption: A has linearly independent columns
- this implies that Gram matrix $A^{T} A$ is invertible
- unique solution of least squares problem is

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b=A^{\dagger} b
$$

- cf. $x=A^{-1} b$, solution of square invertible system $A x=b$

Derivation via calculus

- define

$$
f(x)=\|A x-b\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)^{2}
$$

- solution \hat{x} satisfies

$$
\frac{\partial f}{\partial x_{k}}(\hat{x})=\nabla f(\hat{x})_{k}=0, \quad k=1, \ldots, n
$$

- taking partial derivatives we get $\nabla f(x)_{k}=\left(2 A^{T}(A x-b)\right)_{k}$
- in matrix-vector notation: $\nabla f(\hat{x})=2 A^{T}(A \hat{x}-b)=0$
- so \hat{x} satisfies normal equations $\left(A^{T} A\right) \hat{x}=A^{T} b$
- and therefore $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$

Direct verification

- let $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$, so $A^{T}(A \hat{x}-b)=0$
- for any n-vector x we have

$$
\begin{aligned}
\|A x-b\|^{2} & =\|(A x-A \hat{x})+(A \hat{x}-b)\|^{2} \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}+2(A(x-\hat{x}))^{T}(A \hat{x}-b) \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}+2(x-\hat{x})^{T} A^{T}(A \hat{x}-b) \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}
\end{aligned}
$$

- so for any $x,\|A x-b\|^{2} \geq\|A \hat{x}-b\|^{2}$
- if equality holds, $A(x-\hat{x})=0$, which implies $x=\hat{x}$ since columns of A are linearly independent

Computing least squares approximate solutions

- compute QR factorization of $A: A=Q R \quad\left(2 m n^{2}\right.$ flops)
- QR factorization exists since columns of A are linearly independent
- to compute $\hat{x}=A^{\dagger} b=R^{-1} Q^{T} b$
- form $Q^{T} b \quad$ (2mn flops)
- compute $\hat{x}=R^{-1}\left(Q^{T} b\right)$ via back substitution (n^{2} flops)
- total complexity $2 m n^{2}$ flops
- identical to algorithm for solving $A x=b$ for square invertible A
- but when A is tall, gives least squares approximate solution

Outline

Least squares problem

Solution of least squares problem

Examples

Advertising purchases

- m demographics groups we want to advertise to
- $v^{\text {des }}$ is m-vector of target views or impressions
- n-vector s gives spending on n advertising channels
- $m \times n$ matrix R gives demographic reach of channels
- $R_{i j}$ is number of views per dollar spent (in $1000 / \$$)
- $v=R s$ is m-vector of views across demographic groups
- $\left\|v^{\mathrm{des}}-R s\right\| / \sqrt{m}$ is RMS deviation from desired views
- we'll use least squares spending $\hat{s}=R^{\dagger} v^{\text {des }}$ (need not be ≥ 0)

Example

- $m=10$ groups, $n=3$ channels
- target views vector $v^{\text {des }}=10^{3} \times \mathbf{1}$
- optimal spending is $\hat{s}=(62,100,1443)$

Introduction to Applied Linear Algebra

Illumination

- n lamps illuminate an area divided in m regions
- $A_{i j}$ is illumination in region i if lamp j is on with power 1 , other lamps are off
- x_{j} is power of lamp j
- $(A x)_{i}$ is illumination level at region i
- b_{i} is target illumination level at region i

figure shows lamp positions for example with

$$
m=25^{2}, \quad n=10
$$

Illumination

- equal lamp powers $(x=\mathbf{1})$

- least squares solution \hat{x}, with $b=\mathbf{1}$

Boyd \& Vandenberghe

