13. Least squares data fitting

Outline

Least squares model fitting

Validation

Feature engineering

Setup

- we believe a scalar y and an n-vector x are related by model

$$
y \approx f(x)
$$

- x is called the independent variable
- y is called the outcome or response variable
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ gives the relation between x and y
- often x is a feature vector, and y is something we want to predict
- we don't know f, which gives the 'true' relationship between x and y

Data

- we are given some data

$$
x^{(1)}, \ldots, x^{(N)}, \quad y^{(1)}, \ldots, y^{(N)}
$$

also called observations, examples, samples, or measurements

- $x^{(i)}, y^{(i)}$ is i th data pair
- $x_{j}^{(i)}$ is the j th component of i th data point $x^{(i)}$

Model

- choose model $\hat{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$, a guess or approximation of f
- linear in the parameters model form:

$$
\hat{f}(x)=\theta_{1} f_{1}(x)+\cdots+\theta_{p} f_{p}(x)
$$

- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are basis functions that we choose
- θ_{i} are model parameters that we choose
- $\hat{y}^{(i)}=\hat{f}\left(x^{(i)}\right)$ is (the model's) prediction of $y^{(i)}$
- we'd like $\hat{y}^{(i)} \approx y^{(i)}$, i.e., model is consistent with observed data

Least squares data fitting

- prediction error or residual is $r_{i}=y^{(i)}-\hat{y}^{(i)}$
- least squares data fitting: choose model parameters θ_{i} to minimize RMS prediction error on data set

$$
\left(\frac{\left(r^{(1)}\right)^{2}+\cdots+\left(r^{(N)}\right)^{2}}{N}\right)^{1 / 2}
$$

- this can be formulated (and solved) as a least squares problem

Least squares data fitting

- express $y^{(i)}, \hat{y}^{(i)}$, and $r^{(i)}$ as N-vectors
$-y^{\mathrm{d}}=\left(y^{(1)}, \ldots, y^{(N)}\right)$ is vector of outcomes
- $\hat{y}^{\mathrm{d}}=\left(\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}\right)$ is vector of predictions
$-r^{\mathrm{d}}=\left(r^{(1)}, \ldots, r^{(N)}\right)$ is vector of residuals
- $\boldsymbol{r m s}\left(r^{\mathrm{d}}\right)$ is RMS prediction error
- define $N \times p$ matrix A with elements $A_{i j}=f_{j}\left(x^{(i)}\right)$, so $\hat{y}^{\mathrm{d}}=A \theta$
- least squares data fitting: choose θ to minimize

$$
\left\|r^{\mathrm{d}}\right\|^{2}=\left\|y^{\mathrm{d}}-\hat{y}^{\mathrm{d}}\right\|^{2}=\left\|y^{\mathrm{d}}-A \theta\right\|^{2}=\left\|A \theta-y^{\mathrm{d}}\right\|^{2}
$$

- $\hat{\theta}=\left(A^{T} A\right)^{-1} A^{T} y$ (if columns of A are linearly independent)
- $\|A \hat{\theta}-y\|^{2} / N$ is minimum mean-square (fitting) error

Fitting a constant model

- simplest possible model: $p=1, f_{1}(x)=1$, so model $\hat{f}(x)=\theta_{1}$ is a constant
- $A=1$, so

$$
\hat{\theta}_{1}=\left(\mathbf{1}^{T} \mathbf{1}\right)^{-1} \mathbf{1}^{T} y^{\mathrm{d}}=(1 / N) \mathbf{1}^{T} y^{\mathrm{d}}=\boldsymbol{\operatorname { a v g }}\left(y^{\mathrm{d}}\right)
$$

- the mean of $y^{(1)}, \ldots, y^{(N)}$ is the least squares fit by a constant
- MMSE is $\boldsymbol{\operatorname { t t d }}\left(y^{\mathrm{d}}\right)^{2}$; RMS error is $\boldsymbol{\operatorname { s t d }}\left(y^{\mathrm{d}}\right)$
- more sophisticated models are judged against the constant model

Fitting univariate functions

- when $n=1$, we seek to approximate a function $f: \mathbf{R} \rightarrow \mathbf{R}$
- we can plot the data $\left(x_{i}, y_{i}\right)$ and the model function $\hat{y}=\hat{f}(x)$

Straight-line fit

- $p=2$, with $f_{1}(x)=1, f_{2}(x)=x$
- model has form $\hat{f}(x)=\theta_{1}+\theta_{2} x$
- matrix A has form

$$
A=\left[\begin{array}{cc}
1 & x^{(1)} \\
1 & x^{(2)} \\
\vdots & \vdots \\
1 & x^{(N)}
\end{array}\right]
$$

- can work out $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ explicitly:

$$
\hat{f}(x)=\boldsymbol{\operatorname { a v g }}\left(y^{\mathrm{d}}\right)+\rho \frac{\boldsymbol{\operatorname { t t d }}\left(y^{\mathrm{d}}\right)}{\boldsymbol{\operatorname { t t d }}\left(x^{\mathrm{d}}\right)}\left(x-\mathbf{\operatorname { a v g }}\left(x^{\mathrm{d}}\right)\right)
$$

where $x^{\mathrm{d}}=\left(x^{(1)}, \ldots, x^{(N)}\right)$

Example

Asset α and β

- x is return of whole market, y is return of a particular asset
- write straight-line model as

$$
\hat{y}=\left(r^{\mathrm{rf}}+\alpha\right)+\beta\left(x-\mu^{\mathrm{mkt}}\right)
$$

- μ^{mkt} is the average market return
- r^{rf} is the risk-free interest rate
- several other slightly different definitions are used
- called asset ' α ' and ' β ', widely used

Time series trend

- $y^{(i)}$ is value of quantity at time $x^{(i)}=i$
- $\hat{y}^{(i)}=\hat{\theta}_{1}+\hat{\theta}_{2} i, \quad i=1, \ldots, N$, is called trend line
- $y^{\mathrm{d}}-\hat{y}^{\mathrm{d}}$ is called de-trended time series
- $\hat{\theta}_{2}$ is trend coefficient

World petroleum consumption

De-trended consumption

Polynomial fit

- $f_{i}(x)=x^{i-1}, \quad i=1, \ldots, p$
- model is a polynomial of degree less than p

$$
\hat{f}(x)=\theta_{1}+\theta_{2} x+\cdots+\theta_{p} x^{p-1}
$$

(here x^{i} means scalar x to i th power; $x^{(i)}$ is i th data point)

- A is Vandermonde matrix

$$
A=\left[\begin{array}{cccc}
1 & x^{(1)} & \cdots & \left(x^{(1)}\right)^{p-1} \\
1 & x^{(2)} & \cdots & \left(x^{(2)}\right)^{p-1} \\
\vdots & \vdots & & \vdots \\
1 & x^{(N)} & \cdots & \left(x^{(N)}\right)^{p-1}
\end{array}\right]
$$

Example

$N=100$ data points

Introduction to Applied Linear Algebra

Regression as general data fitting

- regression model is affine function $\hat{y}=\hat{f}(x)=x^{T} \beta+v$
- fits general fitting form with basis functions

$$
f_{1}(x)=1, \quad f_{i}(x)=x_{i-1}, \quad i=2, \ldots, n+1
$$

so model is

$$
\hat{y}=\theta_{1}+\theta_{2} x_{1}+\cdots+\theta_{n+1} x_{n}=x^{T} \theta_{2: n}+\theta_{1}
$$

- $\beta=\theta_{2: n+1}, v=\theta_{1}$

General data fitting as regression

- general fitting model $\hat{f}(x)=\theta_{1} f_{1}(x)+\cdots+\theta_{p} f_{p}(x)$
- common assumption: $f_{1}(x)=1$
- same as regression model $\hat{f}(\tilde{x})=\tilde{x}^{T} \beta+v$, with
- $\tilde{x}=\left(f_{2}(x), \ldots, f_{p}(x)\right)$ are 'transformed features'
$-v=\theta_{1}, \beta=\theta_{2: p}$

Auto-regressive time series model

- time zeries z_{1}, z_{2}, \ldots
- auto-regressive (AR) prediction model:

$$
\hat{z}_{t+1}=\theta_{1} z_{t}+\cdots+\theta_{M} z_{t-M+1}, \quad t=M, M+1, \ldots
$$

- M is memory of model
- \hat{z}_{t+1} is prediction of next value, based on previous M values
- we'll choose β to minimize sum of squares of prediction errors,

$$
\left(\hat{z}_{M+1}-z_{M+1}\right)^{2}+\cdots+\left(\hat{z}_{T}-z_{T}\right)^{2}
$$

- put in general form with

$$
y^{(i)}=z_{M+i}, \quad x^{(i)}=\left(z_{M+i-1}, \ldots, z_{i}\right), \quad i=1, \ldots, T-M
$$

Example

- hourly temperature at LAX in May 2016, length 744
- average is $61.76^{\circ} \mathrm{F}$, standard deviation $3.05^{\circ} \mathrm{F}$
- predictor $\hat{z}_{t+1}=z_{t}$ gives RMS error $1.16^{\circ} \mathrm{F}$
- predictor $\hat{z}_{t+1}=z_{t-23}$ gives RMS error $1.73^{\circ} \mathrm{F}$
- AR model with $M=8$ gives RMS error $0.98^{\circ} \mathrm{F}$

Example

solid line shows one-hour ahead predictions from AR model, first 5 days

Outline

Least squares model fitting

Validation

Feature engineering

Generalization

basic idea:

- goal of model is not to predict outcome for the given data
- instead it is to predict the outcome on new, unseen data
- a model that makes reasonable predictions on new, unseen data has generalization ability, or generalizes
- a model that makes poor predictions on new, unseen data is said to suffer from over-fit

Validation

a simple and effective method to guess if a model will generalize

- split original data into a training set and a test set
- typical splits: 80\%/20\%, 90\%/10\%
- build ('train') model on training data set
- then check the model's predictions on the test data set
- (can also compare RMS prediction error on train and test data)
- if they are similar, we can guess the model will generalize

Validation

- can be used to choose among different candidate models, e.g.
- polynomials of different degrees
- regression models with different sets of regressors
- we'd use one with low, or lowest, test error

Example

models fit using training set of 100 points; plots show test set of 100 points

Example

- suggests degree 4, 5 , or 6 are reasonable choices

Cross validation

to carry out cross validation:

- divide data into 10 folds
- for $i=1, \ldots, 10$, build (train) model using all folds except i
- test model on data in fold i
interpreting cross validation results:
- if test RMS errors are much larger than train RMS errors, model is over-fit
- if test and train RMS errors are similar and consistent, we can guess the model will have a similar RMS error on future data

Example

- house price, regression fit with $x=$ (area $/ 1000 \mathrm{ft.}^{2}$, bedrooms)
- 774 sales, divided into 5 folds of 155 sales each
- fit 5 regression models, removing each fold

	Model parameters				RMS error	
Fold	v	β_{1}	β_{2}		Train	Test
1	60.65	143.36	-18.00		74.00	78.44
2	54.00	151.11	-20.30		75.11	73.89
3	49.06	157.75	-21.10		76.22	69.93
4	47.96	142.65	-14.35		71.16	88.35
5	60.24	150.13	-21.11		77.28	64.20

Outline

Least squares model fitting

Validation

Feature engineering

Feature engineering

- start with original or base feature n-vector x
- choose basis functions f_{1}, \ldots, f_{p} to create 'mapped' feature p-vector

$$
\left(f_{1}(x), \ldots, f_{p}(x)\right)
$$

- now fit linear in parameters model with mapped features

$$
\hat{y}=\theta_{1} f_{1}(x)+\cdots+\theta_{p} f_{p}(x)
$$

- check the model using validation

Transforming features

- standardizing features: replace x_{i} with

$$
\left(x_{i}-b_{i}\right) / a_{i}
$$

- $b_{i} \approx$ mean value of the feature across the data
- $a_{i} \approx$ standard deviation of the feature across the data
new features are called z-scores
- log transform: if x_{i} is nonnegative and spans a wide range, replace it with

$$
\log \left(1+x_{i}\right)
$$

- hi and lo features: create new features given by

$$
\max \left\{x_{1}-b, 0\right\}, \quad \min \left\{x_{1}-a, 0\right\}
$$

(called hi and lo versions of original feature x_{i})

Example

- house price prediction
- start with base features
$-x_{1}$ is area of house (in $1000 \mathrm{ft.}^{2}$)
- x_{2} is number of bedrooms
- x_{3} is 1 for condo, 0 for house
- x_{4} is zip code of address (62 values)
- we'll use $p=8$ basis functions:
$-f_{1}(x)=1, f_{2}(x)=x_{1}, f_{3}(x)=\max \left\{x_{1}-1.5,0\right\}$
$-f_{4}(x)=x_{2}, f_{5}(x)=x_{3}$
- $f_{6}(x), f_{7}(x), f_{8}(x)$ are Boolean functions of x_{4} which encode 4 groups of nearby zip codes (i.e., neighborhood)
- five fold model validation

Example

Fold	Model parameters								RMS error	
	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}	θ_{6}	θ_{7}	θ_{8}	Train	Test
1	122.35	166.87	-39.27	-16.31	-23.97	-100.42	-106.66	-25.98	67.29	72.78
2	100.95	186.65	-55.80	-18.66	-14.81	-99.10	-109.62	-17.94	67.83	70.81
3	133.61	167.15	-23.62	-18.66	-14.71	-109.32	-114.41	-28.46	69.70	63.80
4	108.43	171.21	-41.25	-15.42	-17.68	-94.17	-103.63	-29.83	65.58	78.91
5	114.45	185.69	-52.71	-20.87	-23.26	-102.84	-110.46	-23.43	70.69	58.27

