13. Least squares data fitting

Outline

Least squares model fitting

Validation

Feature engineering

Introduction to Applied Linear Algebra

Setup

▶ we believe a scalar *y* and an *n*-vector *x* are related by *model*

 $y \approx f(x)$

- x is called the *independent variable*
- ► *y* is called the *outcome* or *response variable*
- $f : \mathbf{R}^n \to \mathbf{R}$ gives the relation between x and y
- often x is a feature vector, and y is something we want to predict
- we don't know f, which gives the 'true' relationship between x and y

Data

• we are given some *data*

$$x^{(1)}, \ldots, x^{(N)}, \qquad y^{(1)}, \ldots, y^{(N)}$$

also called observations, examples, samples, or measurements

- $x^{(i)}, y^{(i)}$ is *i*th *data pair*
- $x_i^{(i)}$ is the *j*th component of *i*th data point $x^{(i)}$

Model

- choose model $\hat{f} : \mathbf{R}^n \to \mathbf{R}$, a guess or approximation of f
- linear in the parameters model form:

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- $f_i : \mathbf{R}^n \to \mathbf{R}$ are *basis functions* that we choose
- θ_i are model parameters that we choose
- $\hat{y}^{(i)} = \hat{f}(x^{(i)})$ is (the model's) *prediction* of $y^{(i)}$
- we'd like $\hat{y}^{(i)} \approx y^{(i)}$, *i.e.*, model is consistent with observed data

Least squares data fitting

- prediction error or residual is $r_i = y^{(i)} \hat{y}^{(i)}$
- Ieast squares data fitting: choose model parameters θ_i to minimize RMS prediction error on data set

$$\left(\frac{(r^{(1)})^2 + \dots + (r^{(N)})^2}{N}\right)^{1/2}$$

this can be formulated (and solved) as a least squares problem

Least squares data fitting

express y⁽ⁱ⁾, ŷ⁽ⁱ⁾, and r⁽ⁱ⁾ as N-vectors
y^d = (y⁽¹⁾,...,y^(N)) is vector of outcomes
ŷ^d = (ŷ⁽¹⁾,...,ŷ^(N)) is vector of predictions
r^d = (r⁽¹⁾,...,r^(N)) is vector of residuals

• $\mathbf{rms}(r^d)$ is *RMS prediction error*

- define $N \times p$ matrix A with elements $A_{ij} = f_j(x^{(i)})$, so $\hat{y}^d = A\theta$
- least squares data fitting: choose θ to minimize

 $||r^{d}||^{2} = ||y^{d} - \hat{y}^{d}||^{2} = ||y^{d} - A\theta||^{2} = ||A\theta - y^{d}||^{2}$

- $\hat{\theta} = (A^T A)^{-1} A^T y$ (if columns of A are linearly independent)
- ► $||A\hat{\theta} y||^2/N$ is minimum mean-square (fitting) error

Fitting a constant model

- ▶ simplest possible model: $p = 1, f_1(x) = 1$, so model $\hat{f}(x) = \theta_1$ is a constant
- $A = \mathbf{1}$, so $\hat{\theta}_1 = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T y^d = (1/N) \mathbf{1}^T y^d = \mathbf{avg}(y^d)$
- the mean of $y^{(1)}, \ldots, y^{(N)}$ is the least squares fit by a constant
- MMSE is $std(y^d)^2$; RMS error is $std(y^d)$
- more sophisticated models are judged against the constant model

Fitting univariate functions

- when n = 1, we seek to approximate a function $f : \mathbf{R} \to \mathbf{R}$
- we can plot the data (x_i, y_i) and the model function $\hat{y} = \hat{f}(x)$

Straight-line fit

•
$$p = 2$$
, with $f_1(x) = 1$, $f_2(x) = x$

• model has form
$$\hat{f}(x) = \theta_1 + \theta_2 x$$

matrix A has form

$$A = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \vdots & \vdots \\ 1 & x^{(N)} \end{bmatrix}$$

• can work out $\hat{\theta}_1$ and $\hat{\theta}_2$ explicitly:

$$\hat{f}(x) = \mathbf{avg}(y^{d}) + \rho \frac{\mathbf{std}(y^{d})}{\mathbf{std}(x^{d})}(x - \mathbf{avg}(x^{d}))$$

where $x^{d} = (x^{(1)}, \dots, x^{(N)})$

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Asset α and β

- \blacktriangleright x is return of whole market, y is return of a particular asset
- write straight-line model as

$$\hat{y} = (r^{\mathrm{rf}} + \alpha) + \beta(x - \mu^{\mathrm{mkt}})$$

- μ^{mkt} is the average market return
- $-r^{\rm rf}$ is the risk-free interest rate
- several other slightly different definitions are used
- called asset ' α ' and ' β ', widely used

Time series trend

- $y^{(i)}$ is value of quantity at time $x^{(i)} = i$
- $\hat{y}^{(i)} = \hat{\theta}_1 + \hat{\theta}_2 i$, i = 1, ..., N, is called *trend line*
- $y^{d} \hat{y}^{d}$ is called *de-trended time series*
- $\hat{\theta}_2$ is trend coefficient

World petroleum consumption

Polynomial fit

•
$$f_i(x) = x^{i-1}, \quad i = 1, ..., p$$

model is a polynomial of degree less than p

$$\hat{f}(x) = \theta_1 + \theta_2 x + \dots + \theta_p x^{p-1}$$

(here x^i means scalar x to *i*th power; $x^{(i)}$ is *i*th data point)

► *A* is Vandermonde matrix

$$A = \begin{bmatrix} 1 & x^{(1)} & \cdots & (x^{(1)})^{p-1} \\ 1 & x^{(2)} & \cdots & (x^{(2)})^{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x^{(N)} & \cdots & (x^{(N)})^{p-1} \end{bmatrix}$$

Regression as general data fitting

• regression model is affine function $\hat{y} = \hat{f}(x) = x^T \beta + v$

fits general fitting form with basis functions

 $f_1(x) = 1$, $f_i(x) = x_{i-1}$, $i = 2, \dots, n+1$

so model is

$$\hat{y} = \theta_1 + \theta_2 x_1 + \dots + \theta_{n+1} x_n = x^T \theta_{2:n} + \theta_1$$

• $\beta = \theta_{2:n+1}, v = \theta_1$

General data fitting as regression

- general fitting model $\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$
- common assumption: $f_1(x) = 1$
- ► same as regression model $\hat{f}(\tilde{x}) = \tilde{x}^T \beta + v$, with
 - $\tilde{x} = (f_2(x), \dots, f_p(x))$ are 'transformed features' - $v = \theta_1, \beta = \theta_{2:p}$

Auto-regressive time series model

- time zeries z_1, z_2, \ldots
- auto-regressive (AR) prediction model:

$$\hat{z}_{t+1} = \theta_1 z_t + \dots + \theta_M z_{t-M+1}, \quad t = M, M+1, \dots$$

- ► *M* is *memory* of model
- \hat{z}_{t+1} is prediction of next value, based on previous *M* values
- we'll choose β to minimize sum of squares of prediction errors,

$$(\hat{z}_{M+1} - z_{M+1})^2 + \cdots + (\hat{z}_T - z_T)^2$$

put in general form with

$$y^{(i)} = z_{M+i}, \quad x^{(i)} = (z_{M+i-1}, \dots, z_i), \quad i = 1, \dots, T - M$$

- hourly temperature at LAX in May 2016, length 744
- ► average is 61.76°F, standard deviation 3.05°F
- predictor $\hat{z}_{t+1} = z_t$ gives RMS error 1.16° F
- predictor $\hat{z}_{t+1} = z_{t-23}$ gives RMS error 1.73° F
- AR model with M = 8 gives RMS error 0.98° F

solid line shows one-hour ahead predictions from AR model, first 5 days

Boyd & Vandenberghe

Outline

Least squares model fitting

Validation

Feature engineering

Introduction to Applied Linear Algebra

Generalization

basic idea:

- goal of model is *not* to predict outcome for the given data
- ▶ instead it is to *predict the outcome on new, unseen data*

- a model that makes reasonable predictions on new, unseen data has generalization ability, or generalizes
- a model that makes poor predictions on new, unseen data is said to suffer from over-fit

Validation

a simple and effective method to guess if a model will generalize

- split original data into a training set and a test set
- typical splits: 80%/20%, 90%/10%
- build ('train') model on training data set
- then check the model's predictions on the test data set
- (can also compare RMS prediction error on train and test data)
- ► if they are similar, we can *guess* the model will generalize

Validation

- can be used to choose among different candidate models, e.g.
 - polynomials of different degrees
 - regression models with different sets of regressors
- we'd use one with low, or lowest, test error

models fit using *training set* of 100 points; plots show *test set* of 100 points

suggests degree 4, 5, or 6 are reasonable choices

Cross validation

to carry out cross validation:

- divide data into 10 folds
- for i = 1, ..., 10, build (train) model using all folds except i
- test model on data in fold i

interpreting cross validation results:

- ► if test RMS errors are much larger than train RMS errors, model is over-fit
- if test and train RMS errors are similar and consistent, we can guess the model will have a similar RMS error on future data

- house price, regression fit with $x = (area/1000 \text{ ft.}^2, \text{ bedrooms})$
- 774 sales, divided into 5 folds of 155 sales each
- fit 5 regression models, removing each fold

	Мо	del param	RMS error			
Fold	V	eta_1	β_2	Train	Test	
1	60.65	143.36	-18.00	74.00	78.44	
2	54.00	151.11	-20.30	75.11	73.89	
3	49.06	157.75	-21.10	76.22	69.93	
4	47.96	142.65	-14.35	71.16	88.35	
5	60.24	150.13	-21.11	77.28	64.20	

Outline

Least squares model fitting

Validation

Feature engineering

Feature engineering

- start with original or base feature *n*-vector x
- choose basis functions f_1, \ldots, f_p to create 'mapped' feature *p*-vector

 $(f_1(x), ..., f_p(x))$

now fit linear in parameters model with mapped features

$$\hat{y} = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

check the model using validation

Transforming features

standardizing features: replace x_i with

 $(x_i - b_i)/a_i$

- $-b_i \approx$ mean value of the feature across the data
- $-a_i \approx$ standard deviation of the feature across the data

new features are called *z*-scores

• *log transform*: if x_i is nonnegative and spans a wide range, replace it with

 $\log(1+x_i)$

hi and lo features: create new features given by

 $\max\{x_1 - b, 0\}, \quad \min\{x_1 - a, 0\}$

(called hi and lo versions of original feature x_i)

- house price prediction
- start with base features
 - x_1 is area of house (in 1000ft.²)
 - $-x_2$ is number of bedrooms
 - $-x_3$ is 1 for condo, 0 for house
 - $-x_4$ is zip code of address (62 values)
- we'll use p = 8 basis functions:
 - $f_1(x) = 1, f_2(x) = x_1, f_3(x) = \max\{x_1 1.5, 0\}$
 - $f_4(x) = x_2, f_5(x) = x_3$
 - $f_6(x)$, $f_7(x)$, $f_8(x)$ are Boolean functions of x_4 which encode 4 groups of nearby zip codes (*i.e.*, neighborhood)
- five fold model validation

	Model parameters								RMS error	
Fold	θ_1	θ_2	θ_3	$ heta_4$	θ_5	θ_6	$ heta_7$	θ_8	Train	Test
1	122.35	166.87	-39.27	-16.31	-23.97	-100.42	-106.66	-25.98	67.29	72.78
2	100.95	186.65	-55.80	-18.66	-14.81	-99.10	-109.62	-17.94	67.83	70.81
3	133.61	167.15	-23.62	-18.66	-14.71	-109.32	-114.41	-28.46	69.70	63.80
4	108.43	171.21	-41.25	-15.42	-17.68	-94.17	-103.63	-29.83	65.58	78.91
5	114.45	185.69	-52.71	-20.87	-23.26	-102.84	-110.46	-23.43	70.69	58.27