15. Multi-objective least squares

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Multi-objective least squares

- goal: choose n-vector x so that k norm squared objectives

$$
J_{1}=\left\|A_{1} x-b_{1}\right\|^{2}, \ldots, J_{k}=\left\|A_{k} x-b_{k}\right\|^{2}
$$

are all small

- A_{i} is an $m_{i} \times n$ matrix, b_{i} is an m_{i}-vector, $i=1, \ldots, k$
- J_{i} are the objectives in a multi-objective optimization problem (also called a multi-criterion problem)
- could choose x to minimize any one J_{i}, but we want one x that makes them all small

Weighted sum objective

- choose positive weights $\lambda_{1}, \ldots, \lambda_{k}$ and form weighted sum objective

$$
J=\lambda_{1} J_{1}+\cdots+\lambda_{k} J_{k}=\lambda_{1}\left\|A_{1} x-b_{1}\right\|^{2}+\cdots+\lambda_{k}\left\|A_{k} x-b_{k}\right\|^{2}
$$

- we'll choose x to minimize J
- we can take $\lambda_{1}=1$, and call J_{1} the primary objective
- interpretation of λ_{i} : how much we care about J_{i} being small, relative to primary objective
- for a bi-criterion problem, we will minimize

$$
J_{1}+\lambda J_{2}=\left\|A_{1} x-b_{1}\right\|^{2}+\lambda\left\|A_{2} x-b_{2}\right\|^{2}
$$

Weighted sum minimization via stacking

- write weighted-sum objective as

$$
J=\left\|\left[\begin{array}{c}
\sqrt{\lambda_{1}}\left(A_{1} x-b_{1}\right) \\
\vdots \\
\sqrt{\lambda_{k}}\left(A_{k} x-b_{k}\right)
\end{array}\right]\right\|^{2}
$$

- so we have $J=\|\tilde{A} x-\tilde{b}\|^{2}$, with

$$
\tilde{A}=\left[\begin{array}{c}
\sqrt{\lambda_{1}} A_{1} \\
\vdots \\
\sqrt{\lambda_{k}} A_{k}
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{c}
\sqrt{\lambda_{1}} b_{1} \\
\vdots \\
\sqrt{\lambda_{k}} b_{k}
\end{array}\right]
$$

- so we can minimize J using basic ('single-criterion') least squares

Weighted sum solution

- assuming columns of \tilde{A} are independent,

$$
\begin{aligned}
\hat{x} & =\left(\tilde{A}^{T} \tilde{A}\right)^{-1} \tilde{A}^{T} \tilde{b} \\
& =\left(\lambda_{1} A_{1}^{T} A_{1}+\cdots+\lambda_{k} A_{k}^{T} A_{k}\right)^{-1}\left(\lambda_{1} A_{1}^{T} b_{1}+\cdots+\lambda_{k} A_{k}^{T} b_{k}\right)
\end{aligned}
$$

- can compute \hat{x} via QR factorization of \tilde{A}
- A_{i} can be wide, or have dependent columns

Optimal trade-off curve

- bi-criterion problem with objectives J_{1}, J_{2}
- let $\hat{x}(\lambda)$ be minimizer of $J_{1}+\lambda J_{2}$
- called Pareto optimal: there is no point z that satisfies

$$
J_{1}(z)<J_{1}(\hat{x}(\lambda)), \quad J_{2}(z)<J_{2}(\hat{x}(\lambda))
$$

i.e., no other point x beats \hat{x} on both objectives

- optimal trade-off curve: $\left(J_{1}(\hat{x}(\lambda)), J_{2}(\hat{x}(\lambda))\right)$ for $\lambda>0$

Example

A_{1} and A_{2} both 10×5

Objectives versus λ and optimal trade-off curve

Using multi-objective least squares

- identify the primary objective
- the basic quantity we want to minimize
- choose one or more secondary objectives
- quantities we'd also like to be small, if possible
- e.g., size of x, roughness of x, distance from some given point
- tweak/tune the weights until we like (or can tolerate) $\hat{x}(\lambda)$
- for bi-criterion problem with $J=J_{1}+\lambda J_{2}$:
- if J_{2} is too big, increase λ
- if J_{1} is too big, decrease λ

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Control

- n-vector x corresponds to actions or inputs
- m-vector y corresponds to results or outputs
- inputs and outputs are related by affine input-output model

$$
y=A x+b
$$

- A and b are known (from analytical models, data fitting ...)
- the goal is to choose x (which determines y), to optimize multiple objectives on x and y

Multi-objective control

- typical primary objective: $J_{1}=\left\|y-y^{\text {des }}\right\|^{2}$, where $y^{\text {des }}$ is a given desired or target output
- typical secondary objectives:
$-x$ is small: $J_{2}=\|x\|^{2}$
- x is not far from a nominal input: $J_{2}=\left\|x-x^{\text {nom }}\right\|^{2}$

Product demand shaping

- we will change prices of n products by n-vector $\delta^{\text {price }}$
- this induces change in demand $\delta^{\text {dem }}=E^{\mathrm{d}} \delta^{\text {price }}$
- E^{d} is the $n \times n$ price elasticity of demand matrix
- we want $J_{1}=\left\|\delta^{\mathrm{dem}}-\delta^{\mathrm{tar}}\right\|^{2}$ small
- and also, we want $J_{2}=\left\|\delta^{\text {price }}\right\|^{2}$ small
- so we minimize $J_{1}+\lambda J_{2}$, and adjust $\lambda>0$
- trades off deviation from target demand and price change magnitude

Robust control

- we have K different input-output models (a.k.a. scenarios)

$$
y^{(k)}=A^{(k)} x+b^{(k)}, \quad k=1, \ldots, K
$$

- these represent uncertainty in the system
- $y^{(k)}$ is the output with input x, if system model k is correct
- average cost across the models:

$$
\frac{1}{K} \sum_{k=1}^{K}\left\|y^{(k)}-y^{\operatorname{des}}\right\|^{2}
$$

- can add terms for x as well, e.g., $\lambda\|x\|^{2}$
- yields choice of x that does well under all scenarios

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Estimation

- measurement model: $y=A x+v$
- n-vector x contains parameters we want to estimate
- m-vector y contains the measurements
- m-vector v are (unknown) noises or measurement errors
- $m \times n$ matrix A connects parameters to measurements
- basic least squares estimation: assuming v is small (and A has independent columns), we guess x by minimizing $J_{1}=\|A x-y\|^{2}$

Regularized inversion

- can get far better results by incorporating prior information about x into estimation, e.g.,
- x should be not too large
- x should be smooth
- express these as secondary objectives:
- $J_{2}=\|x\|^{2}$ ('Tikhonov regularization')
- $J_{2}=\|D x\|^{2}$
- we minimize $J_{1}+\lambda J_{2}$
- adjust λ until you like the results
- curve of $\hat{x}(\lambda)$ versus λ is called regularization path
- with Tikhonov regularization, works even when A has dependent columns (e.g., when it is wide)

Image de-blurring

- x is an image
- A is a blurring operator
- $y=A x+v$ is a blurred, noisy image
- least squares de-blurring: choose x to minimize

$$
\|A x-y\|^{2}+\lambda\left(\left\|D_{\mathrm{v}} x\right\|^{2}+\left\|D_{\mathrm{h}} x\right\|^{2}\right)
$$

$D_{\mathrm{v}}, D_{\mathrm{h}}$ are vertical and horizontal differencing operations

- λ controls smoothing of de-blurred image

Example

blurred, noisy image

Image credit: NASA

Regularization path

$$
\lambda=10^{-6}
$$

Regularization path

$$
\lambda=10^{-2}
$$

Tomography

- x represents values in region of interest of n voxels (pixels)
- $y=A x+v$ are measurements of integrals along lines through region

$$
y_{i}=\sum_{i=1}^{n} A_{i j} x_{j}+v_{i}
$$

- $A_{i j}$ is the length of the intersection of the line in measurement i with voxel j

Least squares tomographic reconstruction

- primary objective is $\|A x-y\|^{2}$
- regularization terms capture prior information about x
- for example, if x varies smoothly over region, use Dirichlet energy for graph that connects each voxel to its neighbors

Example

${ }^{3}$ 三III ${ }^{4}$ 三III 5 III

- left: 4000 lines (100 points, 40 lines per point)
- right: object placed in the square region on the left
- region of interest is divided in 10000 pixels

Regularized least squares reconstruction

$\lambda=5$

Introduction to Applied Linear Algebra

$\lambda=10$
$\lambda=100$

Boyd \& Vandenberghe

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Motivation for regularization

- consider data fitting model (of relationship $y \approx f(x)$)

$$
\hat{f}(x)=\theta_{1} f_{1}(x)+\cdots+\theta_{p} f_{p}(x)
$$

with $f_{1}(x)=1$

- θ_{i} is the sensitivity of $\hat{f}(x)$ to $f_{i}(x)$
- so large θ_{i} means the model is very sensitive to $f_{i}(x)$
- θ_{1} is an exception, since $f_{1}(x)=1$ never varies
- so, we don't want $\theta_{2}, \ldots, \theta_{p}$ to be too large

Regularized data fitting

- suppose we have training data $x^{(1)}, \ldots, x^{(N)}, y^{(1)}, \ldots, y^{(N)}$
- express fitting error on data set as $A \theta-y$
- regularized data fitting: choose θ to minimize

$$
\|A \theta-y\|^{2}+\lambda\left\|\theta_{2: p}\right\|^{2}
$$

- $\lambda>0$ is the regularization parameter
- for regression model $\hat{y}=X^{T} \beta+v \mathbf{1}$, we minimize

$$
\left\|X^{T} \beta+v \mathbf{1}-y\right\|^{2}+\lambda\|\beta\|^{2}
$$

- choose λ by validation on a test set

Example

- solid line is signal used to generate synthetic (simulated) data
- 10 blue points are used as training set; 20 red points are used as test set
- we fit a model with five parameters $\theta_{1}, \ldots, \theta_{5}$:

$$
\left.\hat{f}(x)=\theta_{1}+\sum_{k=1}^{4} \theta_{k+1} \cos \left(\omega_{k} x+\phi_{k}\right) \quad \text { (with given } \omega_{k}, \phi_{k}\right)
$$

Result of regularized least squares fit

RMS error versus λ

Coefficients versus λ

- minimum test RMS error is for λ around 0.08
- increasing λ 'shrinks' the coefficients $\theta_{2}, \ldots, \theta_{5}$
- dashed lines show coefficients used to generate the data
- for λ near 0.08 , estimated coefficients are close to these 'true' values

