15. Multi-objective least squares

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Multi-objective least squares

• goal: choose *n*-vector x so that k norm squared objectives

$$J_1 = ||A_1x - b_1||^2, \dots, J_k = ||A_kx - b_k||^2$$

are all small

- A_i is an $m_i \times n$ matrix, b_i is an m_i -vector, i = 1, ..., k
- J_i are the objectives in a multi-objective optimization problem (also called a multi-criterion problem)
- could choose x to minimize any one J_i, but we want one x that makes them all small

Weighted sum objective

• choose positive weights $\lambda_1, \ldots, \lambda_k$ and form weighted sum objective

$$J = \lambda_1 J_1 + \dots + \lambda_k J_k = \lambda_1 ||A_1 x - b_1||^2 + \dots + \lambda_k ||A_k x - b_k||^2$$

- we'll choose x to minimize J
- we can take $\lambda_1 = 1$, and call J_1 the primary objective
- interpretation of λ_i : how much we care about J_i being small, relative to primary objective
- ► for a bi-criterion problem, we will minimize

$$J_1 + \lambda J_2 = \|A_1 x - b_1\|^2 + \lambda \|A_2 x - b_2\|^2$$

Weighted sum minimization via stacking

write weighted-sum objective as

$$J = \left\| \begin{bmatrix} \sqrt{\lambda_1}(A_1x - b_1) \\ \vdots \\ \sqrt{\lambda_k}(A_kx - b_k) \end{bmatrix} \right\|^2$$

• so we have $J = ||\tilde{A}x - \tilde{b}||^2$, with

$$\tilde{A} = \begin{bmatrix} \sqrt{\lambda_1} A_1 \\ \vdots \\ \sqrt{\lambda_k} A_k \end{bmatrix}, \qquad \tilde{b} = \begin{bmatrix} \sqrt{\lambda_1} b_1 \\ \vdots \\ \sqrt{\lambda_k} b_k \end{bmatrix}$$

 \blacktriangleright so we can minimize J using basic ('single-criterion') least squares

Weighted sum solution

• assuming columns of \tilde{A} are independent,

$$\hat{x} = (\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T \tilde{b}$$

= $(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k)^{-1} (\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k)$

- can compute \hat{x} via QR factorization of \tilde{A}
- A_i can be wide, or have dependent columns

Optimal trade-off curve

- bi-criterion problem with objectives J_1 , J_2
- let $\hat{x}(\lambda)$ be minimizer of $J_1 + \lambda J_2$
- called Pareto optimal: there is no point z that satisfies

 $J_1(z) < J_1(\hat{x}(\lambda)), \quad J_2(z) < J_2(\hat{x}(\lambda))$

i.e., no other point x beats \hat{x} on both objectives

• optimal trade-off curve: $(J_1(\hat{x}(\lambda)), J_2(\hat{x}(\lambda)))$ for $\lambda > 0$

Example

A_1 and A_2 both 10×5

Objectives versus λ and optimal trade-off curve

Using multi-objective least squares

- identify the primary objective
 - the basic quantity we want to minimize
- choose one or more secondary objectives
 - quantities we'd also like to be small, if possible
 - e.g., size of x, roughness of x, distance from some given point
- tweak/tune the weights until we like (or can tolerate) $\hat{x}(\lambda)$
- for bi-criterion problem with $J = J_1 + \lambda J_2$:
 - if J_2 is too big, increase λ
 - if J_1 is too big, decrease λ

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Control

- *n*-vector *x* corresponds to *actions* or *inputs*
- *m*-vector *y* corresponds to *results* or *outputs*
- inputs and outputs are related by affine input-output model

$$y = Ax + b$$

- A and b are known (from analytical models, data fitting ...)
- the goal is to choose x (which determines y), to optimize multiple objectives on x and y

Multi-objective control

- typical primary objective: $J_1 = ||y y^{des}||^2$, where y^{des} is a given desired or target output
- typical secondary objectives:
 - *x* is small: $J_2 = ||x||^2$
 - *x* is not far from a nominal input: $J_2 = ||x x^{\text{nom}}||^2$

Product demand shaping

- we will change prices of *n* products by *n*-vector δ^{price}
- this induces change in demand $\delta^{dem} = E^d \delta^{price}$
- E^{d} is the $n \times n$ price elasticity of demand matrix
- we want $J_1 = \|\delta^{\text{dem}} \delta^{\text{tar}}\|^2$ small
- and also, we want $J_2 = \|\delta^{\text{price}}\|^2$ small
- so we minimize $J_1 + \lambda J_2$, and adjust $\lambda > 0$
- trades off deviation from target demand and price change magnitude

Robust control

we have K different input-output models (a.k.a. scenarios)

$$y^{(k)} = A^{(k)}x + b^{(k)}, \quad k = 1, \dots, K$$

- these represent uncertainty in the system
- $y^{(k)}$ is the output with input *x*, if system model *k* is correct
- average cost across the models:

$$\frac{1}{K} \sum_{k=1}^{K} \|y^{(k)} - y^{\text{des}}\|^2$$

- can add terms for x as well, *e.g.*, $\lambda ||x||^2$
- yields choice of x that does well under all scenarios

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Estimation

- measurement model: y = Ax + v
- *n*-vector *x* contains parameters we want to estimate
- *m*-vector *y* contains the measurements
- *m*-vector *v* are (unknown) *noises* or *measurement errors*
- $m \times n$ matrix A connects parameters to measurements
- ► *basic least squares estimation*: assuming *v* is small (and *A* has independent columns), we guess *x* by minimizing $J_1 = ||Ax y||^2$

Regularized inversion

- can get far better results by incorporating prior information about x into estimation, e.g.,
 - -x should be not too large
 - *x* should be smooth
- express these as secondary objectives:
 - $J_2 = ||x||^2$ ('Tikhonov regularization') - $J_2 = ||Dx||^2$
- we minimize $J_1 + \lambda J_2$
- adjust λ until you like the results
- curve of $\hat{x}(\lambda)$ versus λ is called *regularization path*
- with Tikhonov regularization, works even when A has dependent columns (*e.g.*, when it is wide)

Image de-blurring

- ► *x* is an image
- ► *A* is a blurring operator
- y = Ax + v is a blurred, noisy image
- least squares de-blurring: choose x to minimize

$$||Ax - y||^2 + \lambda(||D_v x||^2 + ||D_h x||^2)$$

 $D_{\rm v}$, $D_{\rm h}$ are vertical and horizontal differencing operations

• λ controls smoothing of de-blurred image

Example

blurred, noisy image

regularized inversion with $\lambda = 0.007$

Boyd & Vandenberghe

Image credit: NASA

Regularization path

 $\lambda = 10^{-6}$

$$\lambda = 10^{-4}$$

Regularization path

 $\lambda = 10^{-2}$

 $\lambda = 1$

Tomography

- x represents values in region of interest of n voxels (pixels)
- y = Ax + v are measurements of integrals along lines through region

$$y_i = \sum_{i=1}^n A_{ij} x_j + v_i$$

• A_{ij} is the length of the intersection of the line in measurement *i* with voxel *j*

Least squares tomographic reconstruction

- primary objective is $||Ax y||^2$
- regularization terms capture prior information about x
- for example, if x varies smoothly over region, use Dirichlet energy for graph that connects each voxel to its neighbors

Example

- Ieft: 4000 lines (100 points, 40 lines per point)
- right: object placed in the square region on the left
- region of interest is divided in 10000 pixels

з 📃 📗

4 **Ξ III**

Regularized least squares reconstruction

 $\lambda = 10^{-2}$

 $\lambda = 10^{-1}$

 $\lambda = 1$

 $\lambda = 5$

 $\lambda = 10$

 $\lambda = 100$

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Outline

Multi-objective least squares problem

Control

Estimation and inversion

Regularized data fitting

Motivation for regularization

• consider data fitting model (of relationship $y \approx f(x)$)

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

with $f_1(x) = 1$

- θ_i is the sensitivity of $\hat{f}(x)$ to $f_i(x)$
- so large θ_i means the model is very sensitive to $f_i(x)$
- θ_1 is an exception, since $f_1(x) = 1$ never varies
- ▶ so, we don't want $\theta_2, \ldots, \theta_p$ to be too large

Regularized data fitting

- suppose we have training data $x^{(1)}, \ldots, x^{(N)}, y^{(1)}, \ldots, y^{(N)}$
- express fitting error on data set as $A\theta y$
- *regularized data fitting*: choose θ to minimize

$$\|A\theta - y\|^2 + \lambda \|\theta_{2:p}\|^2$$

- $\lambda > 0$ is the *regularization parameter*
- for regression model $\hat{y} = X^T \beta + v \mathbf{1}$, we minimize

$$\|X^T\beta + v\mathbf{1} - y\|^2 + \lambda \|\beta\|^2$$

• choose λ by validation on a test set

Example

- solid line is signal used to generate synthetic (simulated) data
- 10 blue points are used as training set; 20 red points are used as test set
- we fit a model with five parameters $\theta_1, \ldots, \theta_5$:

$$\hat{f}(x) = \theta_1 + \sum_{k=1}^4 \theta_{k+1} \cos(\omega_k x + \phi_k)$$
 (with given ω_k, ϕ_k)

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Result of regularized least squares fit

- minimum test RMS error is for λ around 0.08
- increasing λ 'shrinks' the coefficients $\theta_2, \ldots, \theta_5$
- dashed lines show coefficients used to generate the data
- for λ near 0.08, estimated coefficients are close to these 'true' values