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Least squares with equality constraints

I the (linearly) constrained least squares problem (CLS) is

minimize kAx � bk2
subject to Cx = d

I variable (to be chosen/found) is n-vector x

I m ⇥ n matrix A, m-vector b, p ⇥ n matrix C, and p-vector d are problem

data (i.e., they are given)

I kAx � bk2 is the objective function

I Cx = d are the equality constraints

I x is feasible if Cx = d

I x̂ is a solution of CLS if Cx̂ = d and kAx̂ � bk2  kAx � bk2 holds for any
n-vector x that satisfies Cx = d
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Least squares with equality constraints

I CLS combines solving linear equations with least squares problem

I like a bi-objective least squares problem, with infinite weight on second
objective kCx � dk2
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Piecewise-polynomial fitting

I piecewise-polynomial f̂ has form

f̂ (x) =
(

p(x) = ✓1 + ✓2x + ✓3x
2 + ✓4x

3
x  a

q(x) = ✓5 + ✓6x + ✓7x
2 + ✓8x

3
x > a

(a is given)

I we require p(a) = q(a), p
0(a) = q

0(a)

I fit f̂ to data (xi,yi), i = 1, . . . ,N by minimizing sum square error

NX

i=1

(f̂ (xi) � yi)2

I can express as a constrained least squares problem
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Example
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Piecewise-polynomial fitting

I constraints are (linear equations in ✓)

✓1 + ✓2a + ✓3a
2 + ✓4a

3 � ✓5 � ✓6a � ✓7a
2 � ✓8a

3 = 0
✓2 + 2✓3a + 3✓4a

2 � ✓6 � 2✓7a � 3✓8a
2 = 0

I prediction error on (xi,yi) is a
T

i
✓ � yi, with

(ai)j =

(
(1,xi,x2

i
,x3

i
,0,0,0,0) xi  a

(0,0,0,0,1,xi,x2
i
,x3

i
) xi > a

I sum square error is kA✓ � yk2, where a
T

i
are rows of A
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Least norm problem

I special case of constrained least squares problem, with A = I, b = 0

I least-norm problem:
minimize kxk2
subject to Cx = d

i.e., find the smallest vector that satisfies a set of linear equations
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Force sequence

I unit mass on frictionless surface, initially at rest

I 10-vector f gives forces applied for one second each

I final velocity and position are

v
fin = f1 + f2 + · · · + f10

p
fin = (19/2)f1 + (17/2)f2 + · · · + (1/2)f10

I let’s find f for which v
fin = 0, p

fin = 1

I f
bb = (1,�1,0, . . . ,0) works (called ‘bang-bang’)
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Bang-bang force sequence
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Least norm force sequence

I let’s find least-norm f that satisfies p
fin = 1, v

fin = 0

I least-norm problem:

minimize kf k2

subject to
"

1 1 · · · 1 1
19/2 17/2 · · · 3/2 1/2

#
f =

"
0
1

#

with variable f

I solution f
ln satisfies kf lnk2 = 0.0121 (compare to kf bbk2 = 2)
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Least norm force sequence
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Optimality conditions via calculus

to solve constrained optimization problem

minimize f (x) = kAx � bk2
subject to c

T

i
x = di, i = 1, . . . ,p

1. form Lagrangian function, with Lagrange multipliers z1, . . . ,zp

L(x,z) = f (x) + z1(cT

1 x � d1) + · · · + zp(cT

p
x � dp)

2. optimality conditions are

@L

@xi

(x̂,z) = 0, i = 1, . . . ,n,
@L

@zi

(x̂,z) = 0, i = 1, . . . ,p
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Optimality conditions via calculus

I
@L

@zi

(x̂,z) = c
T

i
x̂ � di = 0, which we already knew

I first n equations are more interesting:

@L

@xi

(x̂,z) = 2
nX

j=1

(AT
A)ijx̂j � 2(AT

b)i +

pX

j=1

zjci = 0

I in matrix-vector form: 2(AT
A)x̂ � 2A

T
b + C

T
z = 0

I put together with Cx̂ = d to get Karush–Kuhn–Tucker (KKT) conditions

"
2A

T
A C

T

C 0

# "
x̂

z

#
=

"
2A

T
b

d

#

a square set of n + p linear equations in variables x̂, z

I KKT equations are extension of normal equations to CLS
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Solution of constrained least squares problem

I assuming the KKT matrix is invertible, we have
"

x̂

z

#
=

"
2A

T
A C

T

C 0

#�1 "
2A

T
b

d

#

I KKT matrix is invertible if and only if

C has linearly independent rows,

"
A

C

#
has linearly independent columns

I implies m + p � n, p  n

I can compute x̂ in 2mn
2 + 2(n + p)3 flops; order is n

3 flops
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Direct verification of solution

I to show that x̂ is solution, suppose x satisfies Cx = d

I then

kAx � bk2 = k(Ax � Ax̂) + (Ax̂ � b)k2
= kA(x � x̂)k2 + kAx̂ � bk2 + 2(Ax � Ax̂)T (Ax̂ � b)

I expand last term, using 2A
T (Ax̂ � b) = �C

T
z, Cx = Cx̂ = d:

2(Ax � Ax̂)T (Ax̂ � b) = 2(x � x̂)T
A

T (Ax̂ � b)
= �(x � x̂)T

C
T

z

= �(C(x � x̂))T
z

= 0

I so kAx � bk2 = kA(x � x̂)k2 + kAx̂ � bk2 � kAx̂ � bk2

I and we conclude x̂ is solution
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Solution of least-norm problem

I least-norm problem: minimize kxk2 subject to Cx = d

I matrix
"

I

C

#
always has independent columns

I we assume that C has independent rows

I optimality condition reduces to"
2I C

T

C 0

# "
x̂

z

#
=

"
0
d

#

I so x̂ = �(1/2)CT
z; second equation is then �(1/2)CC

T
z = d

I plug z = �2(CC
T )�1

d into first equation to get

x̂ = C
T (CC

T )�1
d = C

†
d

where C
† is (our old friend) the pseudo-inverse
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so when C has linearly independent rows:
I C

† is a right inverse of C

I so for any d, x̂ = C
†
d satisfies Cx̂ = d

I and we now know: x̂ is the smallest solution of Cx = d
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