16. Constrained least squares

Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Least squares with equality constraints

- the (linearly) constrained least squares problem (CLS) is

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & C x=d
\end{array}
$$

- variable (to be chosen/found) is n-vector x
- $m \times n$ matrix A, m-vector $b, p \times n$ matrix C, and p-vector d are problem data (i.e., they are given)
- $\|A x-b\|^{2}$ is the objective function
- $C x=d$ are the equality constraints
- x is feasible if $C x=d$
- \hat{x} is a solution of CLS if $C \hat{x}=d$ and $\|A \hat{x}-b\|^{2} \leq\|A x-b\|^{2}$ holds for any n-vector x that satisfies $C x=d$

Least squares with equality constraints

- CLS combines solving linear equations with least squares problem
- like a bi-objective least squares problem, with infinite weight on second objective $\|C x-d\|^{2}$

Piecewise-polynomial fitting

- piecewise-polynomial \hat{f} has form

$$
\hat{f}(x)= \begin{cases}p(x)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}+\theta_{4} x^{3} & x \leq a \\ q(x)=\theta_{5}+\theta_{6} x+\theta_{7} x^{2}+\theta_{8} x^{3} & x>a\end{cases}
$$

(a is given)

- we require $p(a)=q(a), p^{\prime}(a)=q^{\prime}(a)$
- fit \hat{f} to data $\left(x_{i}, y_{i}\right), i=1, \ldots, N$ by minimizing sum square error

$$
\sum_{i=1}^{N}\left(\hat{f}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- can express as a constrained least squares problem

Example

Piecewise-polynomial fitting

- constraints are (linear equations in θ)

$$
\begin{aligned}
\theta_{1}+\theta_{2} a+\theta_{3} a^{2}+\theta_{4} a^{3}-\theta_{5}-\theta_{6} a-\theta_{7} a^{2}-\theta_{8} a^{3} & =0 \\
\theta_{2}+2 \theta_{3} a+3 \theta_{4} a^{2}-\theta_{6}-2 \theta_{7} a-3 \theta_{8} a^{2} & =0
\end{aligned}
$$

- prediction error on $\left(x_{i}, y_{i}\right)$ is $a_{i}^{T} \theta-y_{i}$, with

$$
\left(a_{i}\right)_{j}= \begin{cases}\left(1, x_{i}, x_{i}^{2}, x_{i}^{3}, 0,0,0,0\right) & x_{i} \leq a \\ \left(0,0,0,0,1, x_{i}, x_{i}^{2}, x_{i}^{3}\right) & x_{i}>a\end{cases}
$$

- sum square error is $\|A \theta-y\|^{2}$, where a_{i}^{T} are rows of A

Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Least norm problem

- special case of constrained least squares problem, with $A=I, b=0$
- least-norm problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|^{2} \\
\text { subject to } & C x=d
\end{array}
$$

i.e., find the smallest vector that satisfies a set of linear equations

Force sequence

- unit mass on frictionless surface, initially at rest
- 10 -vector f gives forces applied for one second each
- final velocity and position are

$$
\begin{aligned}
v_{\mathrm{fin}} & =f_{1}+f_{2}+\cdots+f_{10} \\
p^{\mathrm{fin}} & =(19 / 2) f_{1}+(17 / 2) f_{2}+\cdots+(1 / 2) f_{10}
\end{aligned}
$$

- let's find f for which $v^{\mathrm{fin}}=0, p^{\mathrm{fin}}=1$
- $f^{\mathrm{bb}}=(1,-1,0, \ldots, 0)$ works (called 'bang-bang')

Bang-bang force sequence

Least norm force sequence

- let's find least-norm f that satisfies $p^{\mathrm{fin}}=1, v^{\mathrm{fin}}=0$
- least-norm problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|f\|^{2} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
19 / 2 & 17 / 2 & \cdots & 3 / 2 & 1 / 2
\end{array}\right] f=\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{array}
$$

with variable f

- solution f^{ln} satisfies $\left\|f^{\mathrm{ln}}\right\|^{2}=0.0121$ (compare to $\left\|f^{\mathrm{bb}}\right\|^{2}=2$)

Least norm force sequence

Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Optimality conditions via calculus

to solve constrained optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=\|A x-b\|^{2} \\
\text { subject to } & c_{i}^{T} x=d_{i}, \quad i=1, \ldots, p
\end{array}
$$

1. form Lagrangian function, with Lagrange multipliers z_{1}, \ldots, z_{p}

$$
L(x, z)=f(x)+z_{1}\left(c_{1}^{T} x-d_{1}\right)+\cdots+z_{p}\left(c_{p}^{T} x-d_{p}\right)
$$

2. optimality conditions are

$$
\frac{\partial L}{\partial x_{i}}(\hat{x}, z)=0, \quad i=1, \ldots, n, \quad \frac{\partial L}{\partial z_{i}}(\hat{x}, z)=0, \quad i=1, \ldots, p
$$

Optimality conditions via calculus

- $\frac{\partial L}{\partial z_{i}}(\hat{x}, z)=c_{i}^{T} \hat{x}-d_{i}=0$, which we already knew
- first n equations are more interesting:

$$
\frac{\partial L}{\partial x_{i}}(\hat{x}, z)=2 \sum_{j=1}^{n}\left(A^{T} A\right)_{i j} \hat{x}_{j}-2\left(A^{T} b\right)_{i}+\sum_{j=1}^{p} z_{j} c_{i}=0
$$

- in matrix-vector form: $2\left(A^{T} A\right) \hat{x}-2 A^{T} b+C^{T} z=0$
- put together with $C \hat{x}=d$ to get Karush-Kuhn-Tucker (KKT) conditions

$$
\left[\begin{array}{cc}
2 A^{T} A & C^{T} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
z
\end{array}\right]=\left[\begin{array}{c}
2 A^{T} b \\
d
\end{array}\right]
$$

a square set of $n+p$ linear equations in variables \hat{x}, z

- KKT equations are extension of normal equations to CLS

Solution of constrained least squares problem

- assuming the KKT matrix is invertible, we have

$$
\left[\begin{array}{c}
\hat{x} \\
z
\end{array}\right]=\left[\begin{array}{cc}
2 A^{T} A & C^{T} \\
C & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
2 A^{T} b \\
d
\end{array}\right]
$$

- KKT matrix is invertible if and only if

C has linearly independent rows, $\left[\begin{array}{l}A \\ C\end{array}\right]$ has linearly independent columns

- implies $m+p \geq n, p \leq n$
- can compute \hat{x} in $2 m n^{2}+2(n+p)^{3}$ flops; order is n^{3} flops

Direct verification of solution

- to show that \hat{x} is solution, suppose x satisfies $C x=d$
- then

$$
\begin{aligned}
\|A x-b\|^{2} & =\|(A x-A \hat{x})+(A \hat{x}-b)\|^{2} \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}+2(A x-A \hat{x})^{T}(A \hat{x}-b)
\end{aligned}
$$

- expand last term, using $2 A^{T}(A \hat{x}-b)=-C^{T} z, C x=C \hat{x}=d$:

$$
\begin{aligned}
2(A x-A \hat{x})^{T}(A \hat{x}-b) & =2(x-\hat{x})^{T} A^{T}(A \hat{x}-b) \\
& =-(x-\hat{x})^{T} C^{T} z \\
& =-(C(x-\hat{x}))^{T} z \\
& =0
\end{aligned}
$$

- so $\|A x-b\|^{2}=\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2} \geq\|A \hat{x}-b\|^{2}$
- and we conclude \hat{x} is solution

Solution of least-norm problem

- least-norm problem: minimize $\|x\|^{2}$ subject to $C x=d$
- matrix $\left[\begin{array}{c}I \\ C\end{array}\right]$ always has independent columns
- we assume that C has independent rows
- optimality condition reduces to

$$
\left[\begin{array}{cc}
2 I & C^{T} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
d
\end{array}\right]
$$

- so $\hat{x}=-(1 / 2) C^{T} z$; second equation is then $-(1 / 2) C C^{T} z=d$
- plug $z=-2\left(C C^{T}\right)^{-1} d$ into first equation to get

$$
\hat{x}=C^{T}\left(C C^{T}\right)^{-1} d=C^{\dagger} d
$$

where C^{\dagger} is (our old friend) the pseudo-inverse
so when C has linearly independent rows:

- C^{\dagger} is a right inverse of C
- so for any $d, \hat{x}=C^{\dagger} d$ satisfies $C \hat{x}=d$
- and we now know: \hat{x} is the smallest solution of $C x=d$

