17. Constrained least squares applications

Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation

Portfolio allocation weights

- we invest a total of V dollars in n different assets (stocks, bonds, ...) over some period (one day, week, month, ...)
- can include short positions, assets you borrow and sell at the beginning, but must return to the borrower at the end of the period
- portfolio allocation weight vector w gives the fraction of our total portfolio value held in each asset
- $V w_{j}$ is the dollar value of asset j you hold
- $\mathbf{1}^{T} w=1$, with negative w_{i} meaning a short position
- $w=(-0.2,0.0,1.2)$ means we take a short position of $0.2 V$ in asset 1 , don't hold any of asset 2 , and hold 1.2 V in asset 3

Leverage, long-only portfolios, and cash

- leverage is $L=\left|w_{1}\right|+\cdots+\left|w_{n}\right|$ (($L-1) / 2$ is also sometimes used)
- $L=1$ when all weights are nonnegative ('long only portfolio')
- $w=\mathbf{1} / n$ is called the uniform portfolio
- we often assume asset n is 'risk-free' (or cash or T-bills)
- so $w=e_{n}$ means the portfolio is all cash

Return over a period

- \tilde{r}_{j} is the return of asset j over the period
- \tilde{r}_{j} is the fractional increase in price or value (decrease if negative)
- often expressed as a percentage, like $+1.1 \%$ or -2.3%
- full portfolio return is

$$
\frac{V^{+}-V}{V}=\tilde{r}^{T} w
$$

where V^{+}is the portfolio value at the end of the period

- if you hold portfolio for t periods with returns r_{1}, \ldots, r_{t} value is

$$
V_{t+1}=V_{1}\left(1+r_{1}\right)\left(1+r_{2}\right) \cdots\left(1+r_{t}\right)
$$

- portfolio value versus time traditionally plotted using $V_{1}=\$ 10000$

Return matrix

- hold portfolio with weights w over T periods
- define $T \times n$ (asset) return matrix, with $R_{t j}$ the return of asset j in period t
- row t of R is \tilde{r}_{t}^{T}, where \tilde{r}_{t} is the asset return vector over period t
- column j of R is time series of asset j returns
- portfolio returns vector (time series) is T-vector $r=R w$
- if last asset is risk-free, the last column of R is $\mu^{\mathrm{rf}} \mathbf{1}$, where μ^{rf} is the risk-free per-period interest rate

Portfolio return and risk

- r is time series (vector) of portfolio returns
- average return or just return is $\mathbf{a v g}(r)$
- risk is $\boldsymbol{\operatorname { s t d }}(r)$
- these are the per-period return and risk
- for small per-period returns we have

$$
\begin{aligned}
V_{T+1} & =V_{1}\left(1+r_{1}\right) \cdots\left(1+r_{T}\right) \\
& \approx V_{1}+V_{1}\left(r_{1}+\cdots+r_{T}\right) \\
& =V_{1}+T \mathbf{a v g}(r) V_{1}
\end{aligned}
$$

- so return approximates the average per-period increase in portfolio value

Annualized return and risk

- mean return and risk are often expressed in annualized form (i.e., per year)
- if there are P trading periods per year

$$
\text { annualized return }=P \mathbf{a v g}(r), \quad \text { annualized risk }=\sqrt{P} \mathbf{s t d}(r)
$$

(the squareroot in risk annualization comes from the assumption that the fluctuations in return around the mean are independent)

- if returns are daily, with 250 trading days in a year

$$
\text { annualized return }=250 \mathbf{a v g}(r), \quad \text { annualized risk }=\sqrt{250} \operatorname{std}(r)
$$

Portfolio optimization

- how should we choose the portfolio weight vector w ?
- we want high (mean) portfolio return, low portfolio risk
- we know past realized asset returns but not future ones
- we will choose w that would have worked well on past returns
- ... and hope it will work well going forward (just like data fitting)

Portfolio optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{\operatorname { t d d }}(R w)^{2}=(1 / T)\|R w-\rho \mathbf{1}\|^{2} \\
\text { subject to } & \mathbf{1}^{T} w=1 \\
& \mathbf{a v g}(R w)=\rho
\end{array}
$$

- w is the weight vector we seek
- R is the returns matrix for past returns
- $R w$ is the (past) portfolio return time series
- require mean (past) return ρ
- we minimize risk for specified value of return
- solutions w are Pareto optimal
- we are really asking what would have been the best constant allocation, had we known future returns

Portfolio optimization via constrained least squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|R w-\rho \mathbf{1}\|^{2} \\
\text { subject to } & {\left[\begin{array}{c}
\mathbf{1}^{T} \\
\mu^{T}
\end{array}\right] w=\left[\begin{array}{l}
1 \\
\rho
\end{array}\right]}
\end{array}
$$

- $\mu=R^{T} \mathbf{1} / T$ is n-vector of (past) asset returns
- ρ is required (past) portfolio return
- an equality constrained least squares problem, with solution

$$
\left[\begin{array}{c}
w \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 R^{T} R & \mathbf{1} & \mu \\
\mathbf{1}^{T} & 0 & 0 \\
\mu^{T} & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
2 \rho T \mu \\
1 \\
\rho
\end{array}\right]
$$

Optimal portfolios

- perform significantly better than individual assets
- risk-return curve forms a straight line
- one end of the line is the risk-free asset
- two-fund theorem: optimal portfolio w is an affine function of ρ

$$
\left[\begin{array}{c}
w \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 R^{T} R & \mathbf{1} & \mu \\
\mathbf{1}^{T} & 0 & 0 \\
\mu^{T} & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\rho\left[\begin{array}{ccc}
2 R^{T} R & \mathbf{1} & \mu \\
\mathbf{1}^{T} & 0 & 0 \\
\mu^{T} & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
2 T \mu \\
0 \\
1
\end{array}\right]
$$

The big assumption

- now we make the big assumption (BA):

FUTURE RETURNS WILL LOOK SOMETHING LIKE PAST ONES

- you are warned this is false, every time you invest
- it is often reasonably true
- in periods of 'market shift' it's much less true
- if BA holds (even approximately), then a good weight vector for past (realized) returns should be good for future (unknown) returns
- for example:
- choose w based on last 2 years of returns
- then use w for next 6 months

Example

20 assets over 2000 days

Pareto optimal portfolios

Five portfolios

	Return				Risk	
Portfolio	Train	Test		Train	Test	Leverage
	0.01	0.01		0.00	0.00	1.00
risk-free	0.10	0.08		0.09	0.07	1.96
$\rho=10 \%$	0.20	0.15		0.18	0.15	3.03
$\rho=20 \%$	0.40	0.30		0.38	0.31	5.48
$\rho=40 \%$	0.10	0.21		0.23	0.13	1.00

- train period of 2000 days used to compute optimal portfolio
- test period is different 500-day period

Total portfolio value

Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation

Linear dynamical system

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}, \quad y_{t}=C_{t} x_{t}, \quad t=1,2, \ldots
$$

- n-vector x_{t} is state at time t
- m-vector u_{t} is input at time t
- p-vector y_{t} is output at time t
- $n \times n$ matrix A_{t} is dynamics matrix
- $n \times m$ matrix B_{t} is input matrix
- $p \times n$ matrix C_{t} is output matrix
- x_{t}, u_{t}, y_{t} often represent deviations from a standard operating condition

Linear quadratic control

$$
\begin{array}{ll}
\operatorname{minimize} & J_{\text {output }}+\rho J_{\text {input }} \\
\text { subject to } & x_{t+1}=A_{t} x_{t}+B_{t} u_{t}, \quad t=1, \ldots, T-1 \\
& x_{1}=x^{\text {init }}, \quad x_{T}=x^{\mathrm{des}}
\end{array}
$$

- variables are state sequence x_{1}, \ldots, x_{T} and input sequence u_{1}, \ldots, u_{T-1}
- two objectives are quadratic functions of state and input sequences:

$$
\begin{aligned}
J_{\text {output }} & =\left\|y_{1}\right\|^{2}+\cdots+\left\|y_{T}\right\|^{2}=\left\|C_{1} x_{1}\right\|^{2}+\cdots+\left\|C_{T} x_{T}\right\|^{2} \\
J_{\text {input }} & =\left\|u_{1}\right\|^{2}+\cdots+\left\|u_{T-1}\right\|^{2}
\end{aligned}
$$

- first constraint imposes the linear dynamics equations
- second set of constraints specifies the initial and final state
- ρ is positive parameter used to trade off the two objectives

Constrained least squares formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|C_{1} x_{1}\right\|^{2}+\cdots+\left\|C_{T} x_{T}\right\|^{2}+\rho\left\|u_{1}\right\|^{2}+\cdots+\rho\left\|u_{T-1}\right\|^{2} \\
\text { subject to } & x_{t+1}=A_{t} x_{t}+B_{t} u_{t}, \quad t=1, \ldots, T-1 \\
& x_{1}=x^{\text {init }}, \quad x_{T}=x^{\mathrm{des}}
\end{array}
$$

- can be written as

$$
\begin{array}{ll}
\operatorname{minimize} & \|\tilde{A} z-\tilde{b}\|^{2} \\
\text { subject to } & \tilde{C} z=\tilde{d}
\end{array}
$$

- vector z contains the $T n+(T-1) m$ variables:

$$
z=\left(x_{1}, \ldots, x_{T}, u_{1}, \ldots, u_{T-1}\right)
$$

Constrained least squares formulation

$$
\begin{gathered}
\tilde{A}=\left[\begin{array}{ccc|ccc}
C_{1} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & C_{T} & 0 & \cdots & 0 \\
\hline 0 & \cdots & 0 & \sqrt{\rho} I & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & \sqrt{\rho} I
\end{array}\right], \quad \tilde{b}=0 \\
\tilde{C}=\left[\begin{array}{cccccc|cccc}
A_{1} & -I & 0 & \cdots & 0 & 0 & B_{1} & 0 & \cdots & 0 \\
0 & A_{2} & -I & \cdots & 0 & 0 & 0 & B_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \\
\hline I & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0
\end{array}\right], \quad \tilde{d}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\hline x^{\text {init }} \\
x^{\text {des }}
\end{array}\right]
\end{gathered}
$$

Example

- time-invariant system: system matrices are constant

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
0.855 & 1.161 & 0.667 \\
0.015 & 1.073 & 0.053 \\
-0.084 & 0.059 & 1.022
\end{array}\right], \quad B=\left[\begin{array}{r}
-0.076 \\
-0.139 \\
0.342
\end{array}\right], \\
C=\left[\begin{array}{lll}
0.218 & -3.597 & -1.683
\end{array}\right]
\end{gathered}
$$

- initial condition $x^{\text {init }}=(0.496,-0.745,1.394)$
- target or desired final state $x^{\mathrm{des}}=0$
- $T=100$

Optimal trade-off curve

Three points on the trade-off curve

$\rho=0.05$

$$
\rho=0.2
$$

$$
\rho=1
$$

Linear state feedback control

- linear state feedback control uses the input

$$
u_{t}=K x_{t}, \quad t=1,2, \ldots
$$

- K is state feedback gain matrix
- widely used, especially when x_{t} should converge to zero, T is not specified
- one choice for K : solve linear quadratic control problem with $x^{\mathrm{des}}=0$
- solution u_{t} is a linear function of $x^{\text {init }}$, so u_{1} can be written as

$$
u_{1}=K x^{\text {init }}
$$

- columns of K can be found by computing u_{1} for $x^{\text {init }}=e_{1}, \ldots, e_{n}$
- use this K as state feedback gain matrix

Example

- system matrices of previous example
- blue curve uses optimal linear quadratic control for $T=100$
- red curve uses simple linear state feedback $u_{t}=K x_{t}$

Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation

State estimation

- linear dynamical system model:

$$
x_{t+1}=A_{t} x_{t}+B_{t} w_{t}, \quad y_{t}=C_{t} x_{t}+v_{t}, \quad t=1,2, \ldots
$$

- x_{t} is state (n-vector)
- y_{t} is measurement (p-vector)
- w_{t} is input or process noise (m-vector)
- v_{t} is measurement noise or measurement residual (p-vector)
- we know A_{t}, B_{t}, C_{t}, and measurements y_{1}, \ldots, y_{T}
- w_{t}, v_{t} are unknown, but assumed small
- state estimation: estimate/guess x_{1}, \ldots, x_{T}

Least squares state estimation

$$
\begin{array}{ll}
\operatorname{minimize} & J_{\text {meas }}+\lambda J_{\text {proc }} \\
\text { subject to } & x_{t+1}=A_{t} x_{t}+B_{t} w_{t}, \quad t=1, \ldots, T-1
\end{array}
$$

- variables: states x_{1}, \ldots, x_{T} and input noise w_{1}, \ldots, w_{T-1}
- primary objective $J_{\text {meas }}$ is sum of squares of measurement residuals:

$$
J_{\text {meas }}=\left\|C_{1} x_{1}-y_{1}\right\|^{2}+\cdots+\left\|C_{T} x_{T}-y_{T}\right\|^{2}
$$

- secondary objective $J_{\text {proc }}$ is sum of squares of process noise

$$
J_{\text {proc }}=\left\|w_{1}\right\|^{2}+\cdots+\left\|w_{T-1}\right\|^{2}
$$

- $\lambda>0$ is a parameter, trades off measurement and process errors

Constrained least squares formulation

minimize $\left\|C_{1} x_{1}-y_{1}\right\|^{2}+\cdots+\left\|C_{T} x_{T}-y_{T}\right\|^{2}+\lambda\left(\left\|w_{1}\right\|^{2}+\cdots+\left\|w_{T-1}\right\|^{2}\right)$
subject to $\quad x_{t+1}=A_{t} x_{t}+B_{t} w_{t}, \quad t=1, \ldots, T-1$

- can be written as

$$
\begin{array}{ll}
\operatorname{minimize} & \|\tilde{A} z-\tilde{b}\|^{2} \\
\text { subject to } & \tilde{C} z=\tilde{d}
\end{array}
$$

- vector z contains the $T n+(T-1) m$ variables:

$$
z=\left(x_{1}, \ldots, x_{T}, w_{1}, \ldots, w_{T-1}\right)
$$

Constrained least squares formulation

$$
\begin{gathered}
\tilde{A}=\left[\begin{array}{cccc|ccc}
C_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & C_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & C_{T} & 0 & \cdots & 0 \\
\hline 0 & 0 & \cdots & 0 & \sqrt{\lambda} I & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & \sqrt{\lambda} I
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T} \\
\hline 0 \\
\vdots \\
0
\end{array}\right] \\
\tilde{C}=\left[\begin{array}{cccccc|cccc}
A_{1} & -I & 0 & \cdots & 0 & 0 & B_{1} & 0 & \cdots & 0 \\
0 & A_{2} & -I & \cdots & 0 & 0 & 0 & B_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1}
\end{array}\right], \quad \tilde{d}=0
\end{gathered}
$$

Missing measurements

- suppose we have measurements y_{t} for $t \in \mathcal{T}$, a subset of $\{1, \ldots, T\}$
- measurements for $t \notin \mathcal{T}$ are missing
- to estimate states, use same formulation but with

$$
J_{\text {meas }}=\sum_{t \in \mathcal{T}}\left\|C_{t} x_{t}-y_{t}\right\|^{2}
$$

- from estimated states \hat{x}_{t}, can estimate missing measurements

$$
\hat{y}_{t}=C_{t} \hat{x}_{t}, \quad t \notin \mathcal{T}
$$

Example

$$
A_{t}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad B_{t}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right], \quad C_{t}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

- simple model of mass moving in a 2-D plane
- $x_{t}=\left(p_{t}, z_{t}\right)$: 2 -vector p_{t} is position, 2 -vector z_{t} is the velocity
- $y_{t}=C_{t} x_{t}+w_{t}$ is noisy measurement of position
- $T=100$

Measurements and true positions

- solid line is exact position $C_{t} x_{t}$
- 100 noisy measurements y_{t} shown as circles

Position estimates

blue lines show position estimates for three values of λ

Cross-validation

- randomly remove 20% (say) of the measurements and use as test set
- for many values of λ, estimate states using other (training) measurements
- for each λ, evaluate RMS measurement residuals on test set
- choose λ to (approximately) minimize the RMS test residuals

Example

- cross-validation method applied to previous example
- remove 20 of the 100 measurements
- suggests using $\lambda \approx 10^{3}$

