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Portfolio allocation weights

I we invest a total of V dollars in n di�erent assets (stocks, bonds, . . . ) over
some period (one day, week, month, . . . )

I can include short positions, assets you borrow and sell at the beginning,
but must return to the borrower at the end of the period

I portfolio allocation weight vector w gives the fraction of our total portfolio
value held in each asset

I Vwj is the dollar value of asset j you hold
I 1T

w = 1, with negative wi meaning a short position
I w = (�0.2,0.0,1.2) means we take a short position of 0.2V in asset 1,

don’t hold any of asset 2, and hold 1.2V in asset 3
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Leverage, long-only portfolios, and cash

I leverage is L = |w1 | + · · · + |wn |
((L � 1)/2 is also sometimes used)

I L = 1 when all weights are nonnegative (‘long only portfolio’)

I w = 1/n is called the uniform portfolio

I we often assume asset n is ‘risk-free’ (or cash or T-bills)

I so w = en means the portfolio is all cash
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Return over a period

I r̃j is the return of asset j over the period
I r̃j is the fractional increase in price or value (decrease if negative)
I often expressed as a percentage, like +1.1% or �2.3%

I full portfolio return is
V
+ � V

V
= r̃

T
w

where V
+ is the portfolio value at the end of the period

I if you hold portfolio for t periods with returns r1, . . . ,rt value is

Vt+1 = V1(1 + r1)(1 + r2) · · · (1 + rt)

I portfolio value versus time traditionally plotted using V1 = $10000
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Return matrix

I hold portfolio with weights w over T periods

I define T ⇥ n (asset) return matrix, with Rtj the return of asset j in period t

I row t of R is r̃
T

t
, where r̃t is the asset return vector over period t

I column j of R is time series of asset j returns

I portfolio returns vector (time series) is T-vector r = Rw

I if last asset is risk-free, the last column of R is µrf1, where µrf is the
risk-free per-period interest rate
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Portfolio return and risk

I r is time series (vector) of portfolio returns

I average return or just return is avg(r)

I risk is std(r)

I these are the per-period return and risk

I for small per-period returns we have

VT+1 = V1(1 + r1) · · · (1 + rT )
⇡ V1 + V1(r1 + · · · + rT )
= V1 + T avg(r)V1

I so return approximates the average per-period increase in portfolio value
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Annualized return and risk

I mean return and risk are often expressed in annualized form (i.e., per year)

I if there are P trading periods per year

annualized return = P avg(r), annualized risk =
p

P std(r)

(the squareroot in risk annualization comes from the assumption that the
fluctuations in return around the mean are independent)

I if returns are daily, with 250 trading days in a year

annualized return = 250 avg(r), annualized risk =
p

250 std(r)
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Portfolio optimization

I how should we choose the portfolio weight vector w?

I we want high (mean) portfolio return, low portfolio risk

I we know past realized asset returns but not future ones

I we will choose w that would have worked well on past returns

I . . . and hope it will work well going forward (just like data fitting)
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Portfolio optimization

minimize std(Rw)2 = (1/T)kRw � ⇢1k2
subject to 1T

w = 1
avg(Rw) = ⇢

I w is the weight vector we seek
I R is the returns matrix for past returns

I Rw is the (past) portfolio return time series
I require mean (past) return ⇢
I we minimize risk for specified value of return
I solutions w are Pareto optimal

I we are really asking what would have been the best constant allocation,
had we known future returns
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Portfolio optimization via constrained least squares

minimize kRw � ⇢1k2

subject to
"

1T

µT

#
w =

"
1
⇢

#

I µ = R
T1/T is n-vector of (past) asset returns

I ⇢ is required (past) portfolio return

I an equality constrained least squares problem, with solution

2666664
w

z1
z2

3777775
=

2666664
2R

T
R 1 µ

1T 0 0
µT 0 0

3777775

�1 2666664
2⇢Tµ

1
⇢

3777775
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Optimal portfolios

I perform significantly better than individual assets

I risk-return curve forms a straight line

I one end of the line is the risk-free asset

I two-fund theorem: optimal portfolio w is an a�ne function of ⇢
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The big assumption

I now we make the big assumption (BA):
������ ������� ���� ���� ��������� ���� ���� ����

– you are warned this is false, every time you invest
– it is often reasonably true
– in periods of ‘market shift’ it’s much less true

I if BA holds (even approximately), then a good weight vector for past
(realized) returns should be good for future (unknown) returns

I for example:
– choose w based on last 2 years of returns
– then use w for next 6 months
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Example

20 assets over 2000 days
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Pareto optimal portfolios
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Five portfolios

Return Risk

Portfolio Train Test Train Test Leverage

risk-free 0.01 0.01 0.00 0.00 1.00
⇢ = 10% 0.10 0.08 0.09 0.07 1.96
⇢ = 20% 0.20 0.15 0.18 0.15 3.03
⇢ = 40% 0.40 0.30 0.38 0.31 5.48
1/n (uniform weights) 0.10 0.21 0.23 0.13 1.00

I train period of 2000 days used to compute optimal portfolio
I test period is di�erent 500-day period
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Total portfolio value
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Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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Linear dynamical system

xt+1 = Atxt + Btut, yt = Ctxt, t = 1,2, . . .

I n-vector xt is state at time t

I m-vector ut is input at time t

I p-vector yt is output at time t

I n ⇥ n matrix At is dynamics matrix

I n ⇥ m matrix Bt is input matrix

I p ⇥ n matrix Ct is output matrix

I xt, ut, yt often represent deviations from a standard operating condition
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Linear quadratic control

minimize Joutput + ⇢Jinput
subject to xt+1 = Atxt + Btut, t = 1, . . . ,T � 1

x1 = x
init, xT = x

des

I variables are state sequence x1, . . . ,xT and input sequence u1, . . . ,uT�1

I two objectives are quadratic functions of state and input sequences:

Joutput = ky1k2 + · · · + kyT k2 = kC1x1k2 + · · · + kCTxT k2

Jinput = ku1k2 + · · · + kuT�1k2

I first constraint imposes the linear dynamics equations
I second set of constraints specifies the initial and final state
I ⇢ is positive parameter used to trade o� the two objectives
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Constrained least squares formulation

minimize kC1x1k2 + · · · + kCTxT k2 + ⇢ku1k2 + · · · + ⇢kuT�1k2

subject to xt+1 = Atxt + Btut, t = 1, . . . ,T � 1
x1 = x

init, xT = x
des

I can be written as
minimize kÃz � b̃k2
subject to C̃z = d̃

I vector z contains the Tn + (T � 1)m variables:

z = (x1, . . . ,xT ,u1, . . . ,uT�1)
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Constrained least squares formulation

Ã =

26666666666666664
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Example

I time-invariant system: system matrices are constant

A =

2666664
0.855 1.161 0.667
0.015 1.073 0.053
�0.084 0.059 1.022

3777775
, B =

2666664
�0.076
�0.139

0.342

3777775
,

C =
f

0.218 �3.597 �1.683
g

I initial condition x
init = (0.496,�0.745,1.394)

I target or desired final state x
des = 0

I T = 100

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.22



Optimal trade-o� curve
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Three points on the trade-o� curve
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Linear state feedback control

I linear state feedback control uses the input

ut = Kxt, t = 1,2, . . .

I K is state feedback gain matrix

I widely used, especially when xt should converge to zero, T is not specified

I one choice for K: solve linear quadratic control problem with x
des = 0

I solution ut is a linear function of x
init, so u1 can be written as

u1 = Kx
init

I columns of K can be found by computing u1 for x
init = e1, . . . ,en

I use this K as state feedback gain matrix
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Example
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I system matrices of previous example
I blue curve uses optimal linear quadratic control for T = 100
I red curve uses simple linear state feedback ut = Kxt
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Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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State estimation

I linear dynamical system model:

xt+1 = Atxt + Btwt, yt = Ctxt + vt, t = 1,2, . . .

I xt is state (n-vector)

I yt is measurement (p-vector)

I wt is input or process noise (m-vector)

I vt is measurement noise or measurement residual (p-vector)

I we know At, Bt, Ct, and measurements y1, . . . ,yT

I wt,vt are unknown, but assumed small

I state estimation: estimate/guess x1, . . . ,xT
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Least squares state estimation

minimize Jmeas + �Jproc
subject to xt+1 = Atxt + Btwt, t = 1, . . . ,T � 1

I variables: states x1, . . . ,xT and input noise w1, . . . ,wT�1

I primary objective Jmeas is sum of squares of measurement residuals:

Jmeas = kC1x1 � y1k2 + · · · + kCTxT � yT k2

I secondary objective Jproc is sum of squares of process noise

Jproc = kw1k2 + · · · + kwT�1k2

I � > 0 is a parameter, trades o� measurement and process errors

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.29



Constrained least squares formulation

minimize kC1x1 � y1k2 + · · · + kCTxT � yT k2 + �(kw1k2 + · · · + kwT�1k2)
subject to xt+1 = Atxt + Btwt, t = 1, . . . ,T � 1

I can be written as
minimize kÃz � b̃k2
subject to C̃z = d̃

I vector z contains the Tn + (T � 1)m variables:

z = (x1, . . . ,xT ,w1, . . . ,wT�1)
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Constrained least squares formulation

Ã =
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Missing measurements

I suppose we have measurements yt for t 2 T , a subset of {1, . . . ,T }
I measurements for t < T are missing

I to estimate states, use same formulation but with

Jmeas =
X

t2T
kCtxt � ytk2

I from estimated states x̂t, can estimate missing measurements

ŷt = Ctx̂t, t < T
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Example

At =

266666664

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

377777775
, Bt =

266666664

0 0
0 0
1 0
0 1

377777775
, Ct =

"
1 0 0 0
0 1 0 0

#

I simple model of mass moving in a 2-D plane

I xt = (pt,zt): 2-vector pt is position, 2-vector zt is the velocity

I yt = Ctxt + wt is noisy measurement of position

I T = 100
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Measurements and true positions
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I solid line is exact position Ctxt

I 100 noisy measurements yt shown as circles
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Position estimates

� = 1 � = 103 � = 105

blue lines show position estimates for three values of �
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Cross-validation

I randomly remove 20% (say) of the measurements and use as test set

I for many values of �, estimate states using other (training) measurements

I for each �, evaluate RMS measurement residuals on test set

I choose � to (approximately) minimize the RMS test residuals
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Example
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I cross-validation method applied to previous example
I remove 20 of the 100 measurements
I suggests using � ⇡ 103
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