2. Linear functions

Outline

Linear and affine functions

Taylor approximation

Regression model

Superposition and linear functions

- $f : \mathbf{R}^n \to \mathbf{R}$ means f is a function mapping n-vectors to numbers
- ► *f* satisfies the *superposition property* if

 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

holds for all numbers α , β , and all *n*-vectors *x*, *y*

- be sure to parse this very carefully!
- a function that satisfies superposition is called *linear*

The inner product function

▶ with *a* an *n*-vector, the function

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

is the *inner product function*

- f(x) is a weighted sum of the entries of x
- the inner product function is linear:

$$f(\alpha x + \beta y) = a^{T}(\alpha x + \beta y)$$

= $a^{T}(\alpha x) + a^{T}(\beta y)$
= $\alpha(a^{T}x) + \beta(a^{T}y)$
= $\alpha f(x) + \beta f(y)$

...and all linear functions are inner products

- suppose $f : \mathbf{R}^n \to \mathbf{R}$ is linear
- then it can be expressed as $f(x) = a^T x$ for some a
- specifically: $a_i = f(e_i)$
- follows from

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$

Affine functions

- a function that is linear plus a constant is called affine
- general form is $f(x) = a^T x + b$, with *a* an *n*-vector and *b* a scalar
- a function $f : \mathbf{R}^n \to \mathbf{R}$ is affine if and only if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all α , β with $\alpha + \beta = 1$, and all *n*-vectors *x*, *y*

sometimes (ignorant) people refer to affine functions as linear

Linear versus affine functions

Outline

Linear and affine functions

Taylor approximation

Regression model

First-order Taylor approximation

- suppose $f : \mathbf{R}^n \to \mathbf{R}$
- ► *first-order Taylor approximation* of *f*, near point *z*:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

- $\hat{f}(x)$ is *very* close to f(x) when x_i are all near z_i
- \hat{f} is an affine function of x
- can write using inner product as

$$\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$$

where *n*-vector $\nabla f(z)$ is the *gradient* of *f* at *z*,

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}(z), \dots, \frac{\partial f}{\partial x_n}(z)\right)$$

Outline

Linear and affine functions

Taylor approximation

Regression model

Regression model

regression model is (the affine function of x)

 $\hat{y} = x^T \beta + v$

- x is a feature vector; its elements x_i are called *regressors*
- *n*-vector β is the *weight vector*
- scalar v is the offset
- scalar ŷ is the *prediction* (of some actual outcome or *dependent variable*, denoted y)

Example

- ▶ *y* is selling price of house in \$1000 (in some location, over some period)
- regressor is

x = (house area, # bedrooms)

(house area in 1000 sq.ft.)

regression model weight vector and offset are

 $\beta = (148.73, -18.85), \quad v = 54.40$

• we'll see later how to guess β and v from sales data

Example

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Example

