2. Linear functions

Outline

Linear and affine functions

Taylor approximation

Regression model

Superposition and linear functions

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ means f is a function mapping n-vectors to numbers
- f satisfies the superposition property if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

holds for all numbers α, β, and all n-vectors x, y

- be sure to parse this very carefully!
- a function that satisfies superposition is called linear

The inner product function

- with a an n-vector, the function

$$
f(x)=a^{T} x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

is the inner product function

- $f(x)$ is a weighted sum of the entries of x
- the inner product function is linear:

$$
\begin{aligned}
f(\alpha x+\beta y) & =a^{T}(\alpha x+\beta y) \\
& =a^{T}(\alpha x)+a^{T}(\beta y) \\
& =\alpha\left(a^{T} x\right)+\beta\left(a^{T} y\right) \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

... and all linear functions are inner products

- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear
- then it can be expressed as $f(x)=a^{T} x$ for some a
- specifically: $a_{i}=f\left(e_{i}\right)$
- follows from

$$
\begin{aligned}
f(x) & =f\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right) \\
& =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right)
\end{aligned}
$$

Affine functions

- a function that is linear plus a constant is called affine
- general form is $f(x)=a^{T} x+b$, with a an n-vector and b a scalar
- a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is affine if and only if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

holds for all α, β with $\alpha+\beta=1$, and all n-vectors x, y

- sometimes (ignorant) people refer to affine functions as linear

Linear versus affine functions

f is linear

$$
g \text { is affine, not linear }
$$

Outline

Linear and affine functions

Taylor approximation

Regression model

First-order Taylor approximation

- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- first-order Taylor approximation of f, near point z :

$$
\hat{f}(x)=f(z)+\frac{\partial f}{\partial x_{1}}(z)\left(x_{1}-z_{1}\right)+\cdots+\frac{\partial f}{\partial x_{n}}(z)\left(x_{n}-z_{n}\right)
$$

- $\hat{f}(x)$ is very close to $f(x)$ when x_{i} are all near z_{i}
- \hat{f} is an affine function of x
- can write using inner product as

$$
\hat{f}(x)=f(z)+\nabla f(z)^{T}(x-z)
$$

where n-vector $\nabla f(z)$ is the gradient of f at z,

$$
\nabla f(z)=\left(\frac{\partial f}{\partial x_{1}}(z), \ldots, \frac{\partial f}{\partial x_{n}}(z)\right)
$$

Example

Outline

Linear and affine functions

Taylor approximation

Regression model

Regression model

- regression model is (the affine function of x)

$$
\hat{y}=x^{T} \beta+v
$$

- x is a feature vector; its elements x_{i} are called regressors
- n-vector β is the weight vector
- scalar v is the offset
- scalar \hat{y} is the prediction (of some actual outcome or dependent variable, denoted y)

Example

- y is selling price of house in $\$ 1000$ (in some location, over some period)
- regressor is

$$
x=\text { (house area, \# bedrooms })
$$

(house area in 1000 sq.ft.)

- regression model weight vector and offset are

$$
\beta=(148.73,-18.85), \quad v=54.40
$$

- we'll see later how to guess β and v from sales data

Example

House	x_{1} (area)	x_{2} (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Example

