3. Norm and distance

Outline

Norm

Distance

Standard deviation

Angle

Introduction to Applied Linear Algebra

Norm

▶ the *Euclidean norm* (or just *norm*) of an *n*-vector *x* is

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

- used to measure the size of a vector
- reduces to absolute value for n = 1

Properties

for any *n*-vectors *x* and *y*, and any scalar β

- homogeneity: $||\beta x|| = |\beta|||x||$
- triangle inequality: $||x + y|| \le ||x|| + ||y||$
- nonnegativity: $||x|| \ge 0$
- *definiteness:* ||x|| = 0 only if x = 0

easy to show except triangle inequality, which we show later

RMS value

mean-square value of n-vector x is

$$\frac{x_1^2 + \dots + x_n^2}{n} = \frac{\|x\|^2}{n}$$

root-mean-square value (RMS value) is

rms(x) =
$$\sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{\|x\|}{\sqrt{n}}$$

- $\mathbf{rms}(x)$ gives 'typical' value of $|x_i|$
- *e.g.*, rms(1) = 1 (independent of *n*)
- RMS value useful for comparing sizes of vectors of different lengths

Norm of block vectors

- suppose a, b, c are vectors
- $||(a,b,c)||^{2} = a^{T}a + b^{T}b + c^{T}c = ||a||^{2} + ||b||^{2} + ||c||^{2}$
- so we have

$$\|(a,b,c)\| = \sqrt{\|a\|^2 + \|b\|^2 + \|c\|^2} = \|(\|a\|,\|b\|,\|c\|)\|$$

(parse RHS very carefully!)

we'll use these ideas later

Chebyshev inequality

- suppose that k of the numbers $|x_1|, \ldots, |x_n|$ are $\geq a$
- then k of the numbers x_1^2, \ldots, x_n^2 are $\ge a^2$
- so $||x||^2 = x_1^2 + \dots + x_n^2 \ge ka^2$
- so we have $k \le ||x||^2/a^2$
- number of x_i with $|x_i| \ge a$ is no more than $||x||^2/a^2$
- this is the Chebyshev inequality
- in terms of RMS value:

fraction of entries with $|x_i| \ge a$ is no more than $\left(\frac{\mathbf{rms}(x)}{a}\right)^2$

• example: no more than 4% of entries can satisfy $|x_i| \ge 5 \operatorname{rms}(x)$

Outline

Norm

Distance

Standard deviation

Angle

Introduction to Applied Linear Algebra

Distance

► (Euclidean) *distance* between *n*-vectors *a* and *b* is

 $\mathbf{dist}(a,b) = \|a - b\|$

• agrees with ordinary distance for n = 1, 2, 3

• $\mathbf{rms}(a - b)$ is the *RMS deviation* between *a* and *b*

Triangle inequality

- ► triangle with vertices at positions *a*,*b*,*c*
- edge lengths are ||a b||, ||b c||, ||a c||
- by triangle inequality

$$||a - c|| = ||(a - b) + (b - c)|| \le ||a - b|| + ||b - c||$$

i.e., third edge length is no longer than sum of other two

Feature distance and nearest neighbors

- if x and y are feature vectors for two entities, ||x y|| is the *feature distance*
- if z_1, \ldots, z_m is a list of vectors, z_j is the *nearest neighbor* of x if

$$||x - z_j|| \le ||x - z_i||, \quad i = 1, \dots, m$$

these simple ideas are very widely used

Introduction to Applied Linear Algebra

Document dissimilarity

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	0.095	0.130	0.153	0.170
Memorial Day	0.095	0	0.122	0.147	0.164
Academy A.	0.130	0.122	0	0.108	0.164
Golden Globe A.	0.153	0.147	0.108	0	0.181
Super Bowl	0.170	0.164	0.164	0.181	0

Outline

Norm

Distance

Standard deviation

Angle

Introduction to Applied Linear Algebra

Standard deviation

- for *n*-vector *x*, $\mathbf{avg}(x) = \mathbf{1}^T x/n$
- de-meaned vector is $\tilde{x} = x \operatorname{avg}(x)\mathbf{1}$ (so $\operatorname{avg}(\tilde{x}) = 0$)
- standard deviation of x is

$$\mathbf{std}(x) = \mathbf{rms}(\tilde{x}) = \frac{\|x - (\mathbf{1}^T x/n)\mathbf{1}\|}{\sqrt{n}}$$

- **std**(*x*) gives 'typical' amount x_i vary from **avg**(*x*)
- $\mathbf{std}(x) = 0$ only if $x = \alpha \mathbf{1}$ for some α
- greek letters μ , σ commonly used for mean, standard deviation
- a basic formula:

$$\mathbf{rms}(x)^2 = \mathbf{avg}(x)^2 + \mathbf{std}(x)^2$$

Mean return and risk

- x is time series of returns (say, in %) on some investment or asset over some period
- avg(x) is the mean return over the period, usually just called *return*
- std(x) measures how variable the return is over the period, and is called the *risk*
- multiple investments (with different return time series) are often compared in terms of return and risk
- often plotted on a risk-return plot

Risk-return example

Chebyshev inequality for standard deviation

- x is an *n*-vector with mean avg(x), standard deviation std(x)
- rough idea: most entries of x are not too far from the mean
- by Chebyshev inequality, fraction of entries of x with

$$|x_i - \mathbf{avg}(x)| \ge \alpha \operatorname{std}(x)$$

is no more than $1/\alpha^2$ (for $\alpha > 1$)

► for return time series with mean 8% and standard deviation 3%, loss $(x_i \le 0)$ can occur in no more than $(3/8)^2 = 14.1\%$ of periods

Outline

Norm

Distance

Standard deviation

Angle

Cauchy–Schwarz inequality

- ▶ for two *n*-vectors *a* and *b*, $|a^Tb| \le ||a|| ||b||$
- written out,

$$|a_1b_1 + \dots + a_nb_n| \le \left(a_1^2 + \dots + a_n^2\right)^{1/2} \left(b_1^2 + \dots + b_n^2\right)^{1/2}$$

now we can show triangle inequality:

$$||a + b||^{2} = ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$\leq ||a||^{2} + 2||a|| ||b|| + ||b||^{2}$$

$$= (||a|| + ||b||)^{2}$$

Derivation of Cauchy–Schwarz inequality

- ► it's clearly true if either *a* or *b* is 0
- ▶ so assume $\alpha = ||a||$ and $\beta = ||b||$ are nonzero

we have

$$0 \leq \|\beta a - \alpha b\|^{2}$$

= $\|\beta a\|^{2} - 2(\beta a)^{T}(\alpha b) + \|\alpha b\|^{2}$
= $\beta^{2} \|a\|^{2} - 2\beta \alpha (a^{T}b) + \alpha^{2} \|b\|^{2}$
= $2\|a\|^{2}\|b\|^{2} - 2\|a\|\|b\|(a^{T}b)$

- divide by 2||a|| ||b|| to get $a^T b \le ||a|| ||b||$
- apply to -a, b to get other half of Cauchy–Schwarz inequality

Angle

► *angle* between two nonzero vectors *a*, *b* defined as

$$\angle(a,b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

•
$$\angle(a,b)$$
 is the number in $[0,\pi]$ that satisfies

$$a^{T}b = ||a|| ||b|| \cos(\angle(a,b))$$

coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

 $\theta = \angle(a,b)$

- $\theta = \pi/2 = 90^{\circ}$: *a* and *b* are *orthogonal*, written $a \perp b$ ($a^T b = 0$)
- $\theta = 0$: *a* and *b* are *aligned* ($a^T b = ||a|| ||b||$)
- $\theta = \pi = 180^{\circ}$: *a* and *b* are *anti-aligned* ($a^T b = -||a|| ||b||$)
- $\theta \le \pi/2 = 90^\circ$: *a* and *b* make an *acute angle* $(a^T b \ge 0)$
- $\theta \ge \pi/2 = 90^\circ$: *a* and *b* make an *obtuse angle* ($a^T b \le 0$)

Spherical distance

if *a*, *b* are on sphere of radius *R*, distance *along the sphere* is $R \angle (a, b)$

Document dissimilarity by angles

- measure dissimilarity by angle of word count histogram vectors
- pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	60.6	85.7	87.0	87.7
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	58.7	85.7
Golden Globe A	. 87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

Correlation coefficient

vectors a and b, and de-meaned vectors

$$\tilde{a} = a - \operatorname{avg}(a)\mathbf{1}, \qquad \tilde{b} = b - \operatorname{avg}(b)\mathbf{1}$$

• correlation coefficient (between a and b, with $\tilde{a} \neq 0$, $\tilde{b} \neq 0$)

$$\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

- $\rho = \cos \angle (\tilde{a}, \tilde{b})$
 - $\rho = 0$: *a* and *b* are *uncorrelated*
 - $-\rho > 0.8$ (or so): *a* and *b* are *highly correlated*
 - $-\rho < -0.8$ (or so): *a* and *b* are *highly anti-correlated*
- very roughly: highly correlated means a_i and b_i are typically both above (below) their means together

Examples

Boyd & Vandenberghe

Examples

- highly correlated vectors:
 - rainfall time series at nearby locations
 - daily returns of similar companies in same industry
 - word count vectors of closely related documents
 (*e.g.*, same author, topic, ...)
 - sales of shoes and socks (at different locations or periods)
- approximately uncorrelated vectors
 - unrelated vectors
 - audio signals (even different tracks in multi-track recording)
- (somewhat) negatively correlated vectors
 - daily temperatures in Palo Alto and Melbourne