3. Norm and distance

Outline

Norm

Distance

Standard deviation

Angle

Norm

- the Euclidean norm (or just norm) of an n-vector x is

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{x^{T} x}
$$

- used to measure the size of a vector
- reduces to absolute value for $n=1$

Properties

for any n-vectors x and y, and any scalar β

- homogeneity: $\|\beta x\|=|\beta|\|x\|$
- triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$
- nonnegativity: $\|x\| \geq 0$
- definiteness: $\|x\|=0$ only if $x=0$
easy to show except triangle inequality, which we show later

RMS value

- mean-square value of n-vector x is

$$
\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}=\frac{\|x\|^{2}}{n}
$$

- root-mean-square value (RMS value) is

$$
\operatorname{rms}(x)=\sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}}=\frac{\|x\|}{\sqrt{n}}
$$

- $\mathbf{r m s}(x)$ gives 'typical' value of $\left|x_{i}\right|$
- e.g., $\mathbf{r m s}(\mathbf{1})=1$ (independent of n)
- RMS value useful for comparing sizes of vectors of different lengths

Norm of block vectors

- suppose a, b, c are vectors
- $\|(a, b, c)\|^{2}=a^{T} a+b^{T} b+c^{T} c=\|a\|^{2}+\|b\|^{2}+\|c\|^{2}$
- so we have

$$
\|(a, b, c)\|=\sqrt{\|a\|^{2}+\|b\|^{2}+\|c\|^{2}}=\|(\|a\|,\|b\|,\|c\|)\|
$$

(parse RHS very carefully!)

- we'll use these ideas later

Chebyshev inequality

- suppose that k of the numbers $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$ are $\geq a$
- then k of the numbers $x_{1}^{2}, \ldots, x_{n}^{2}$ are $\geq a^{2}$
- so $\|x\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2} \geq k a^{2}$
- so we have $k \leq\|x\|^{2} / a^{2}$
- number of x_{i} with $\left|x_{i}\right| \geq a$ is no more than $\|x\|^{2} / a^{2}$
- this is the Chebyshev inequality
- in terms of RMS value:

$$
\text { fraction of entries with }\left|x_{i}\right| \geq a \text { is no more than }\left(\frac{\operatorname{rms}(x)}{a}\right)^{2}
$$

- example: no more than 4% of entries can satisfy $\left|x_{i}\right| \geq 5 \operatorname{rms}(x)$

Outline

Norm

Distance

Standard deviation

Angle

Distance

- (Euclidean) distance between n-vectors a and b is

$$
\boldsymbol{\operatorname { d i s t }}(a, b)=\|a-b\|
$$

- agrees with ordinary distance for $n=1,2,3$

- $\boldsymbol{\operatorname { r m s }}(a-b)$ is the RMS deviation between a and b

Triangle inequality

- triangle with vertices at positions a, b, c
- edge lengths are $\|a-b\|,\|b-c\|,\|a-c\|$
- by triangle inequality

$$
\|a-c\|=\|(a-b)+(b-c)\| \leq\|a-b\|+\|b-c\|
$$

i.e., third edge length is no longer than sum of other two

Feature distance and nearest neighbors

- if x and y are feature vectors for two entities, $\|x-y\|$ is the feature distance
- if z_{1}, \ldots, z_{m} is a list of vectors, z_{j} is the nearest neighbor of x if

$$
\left\|x-z_{j}\right\| \leq\left\|x-z_{i}\right\|, \quad i=1, \ldots, m
$$

- these simple ideas are very widely used

Document dissimilarity

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day’, 'Academy Awards’, 'Golden Globe Awards', ‘Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	0.095	0.130	0.153	0.170
Memorial Day	0.095	0	0.122	0.147	0.164
Academy A.	0.130	0.122	0	0.108	0.164
Golden Globe A.	0.153	0.147	0.108	0	0.181
Super Bowl	0.170	0.164	0.164	0.181	0

Outline

Norm

Distance

Standard deviation

Angle

Standard deviation

- for n-vector $x, \operatorname{avg}(x)=\mathbf{1}^{T} x / n$
- de-meaned vector is $\tilde{x}=x-\mathbf{a v g}(x) \mathbf{1} \quad(\operatorname{so~} \mathbf{a v g}(\tilde{x})=0)$
- standard deviation of x is

$$
\operatorname{std}(x)=\operatorname{rms}(\tilde{x})=\frac{\left\|x-\left(\mathbf{1}^{T} x / n\right) \mathbf{1}\right\|}{\sqrt{n}}
$$

- $\boldsymbol{\operatorname { s t d }}(x)$ gives 'typical' amount x_{i} vary from $\mathbf{a v g}(x)$
- $\boldsymbol{\operatorname { s t d }}(x)=0$ only if $x=\alpha \mathbf{1}$ for some α
- greek letters μ, σ commonly used for mean, standard deviation
- a basic formula:

$$
\mathbf{r m s}(x)^{2}=\mathbf{a v g}(x)^{2}+\boldsymbol{\operatorname { t t d }}(x)^{2}
$$

Mean return and risk

- x is time series of returns (say, in \%) on some investment or asset over some period
- $\operatorname{avg}(x)$ is the mean return over the period, usually just called return
- $\boldsymbol{\operatorname { s t d }}(x)$ measures how variable the return is over the period, and is called the risk
- multiple investments (with different return time series) are often compared in terms of return and risk
- often plotted on a risk-return plot

Risk-return example

Chebyshev inequality for standard deviation

- x is an n-vector with mean $\operatorname{avg}(x)$, standard deviation $\operatorname{std}(x)$
- rough idea: most entries of x are not too far from the mean
- by Chebyshev inequality, fraction of entries of x with

$$
\left|x_{i}-\mathbf{\operatorname { a v g }}(x)\right| \geq \alpha \boldsymbol{\operatorname { s t d }}(x)
$$

is no more than $1 / \alpha^{2}$ (for $\alpha>1$)

- for return time series with mean 8% and standard deviation 3%, loss $\left(x_{i} \leq 0\right)$ can occur in no more than $(3 / 8)^{2}=14.1 \%$ of periods

Outline

Norm
 Distance
 Standard deviation

Angle

Cauchy-Schwarz inequality

- for two n-vectors a and $b,\left|a^{T} b\right| \leq\|a\|\|b\|$
- written out,

$$
\left|a_{1} b_{1}+\cdots+a_{n} b_{n}\right| \leq\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)^{1 / 2}
$$

- now we can show triangle inequality:

$$
\begin{aligned}
\|a+b\|^{2} & =\|a\|^{2}+2 a^{T} b+\|b\|^{2} \\
& \leq\|a\|^{2}+2\|a\|\|b\|+\|b\|^{2} \\
& =(\|a\|+\|b\|)^{2}
\end{aligned}
$$

Derivation of Cauchy-Schwarz inequality

- it's clearly true if either a or b is 0
- so assume $\alpha=\|a\|$ and $\beta=\|b\|$ are nonzero
- we have

$$
\begin{aligned}
0 & \leq\|\beta a-\alpha b\|^{2} \\
& =\|\beta a\|^{2}-2(\beta a)^{T}(\alpha b)+\|\alpha b\|^{2} \\
& =\beta^{2}\|a\|^{2}-2 \beta \alpha\left(a^{T} b\right)+\alpha^{2}\|b\|^{2} \\
& =2\|a\|^{2}\|b\|^{2}-2\|a\|\|b\|\left(a^{T} b\right)
\end{aligned}
$$

- divide by $2\|a\|\|b\|$ to get $a^{T} b \leq\|a\|\|b\|$
- apply to $-a, b$ to get other half of Cauchy-Schwarz inequality

Angle

- angle between two nonzero vectors a, b defined as

$$
\angle(a, b)=\arccos \left(\frac{a^{T} b}{\|a\|\|b\|}\right)
$$

- $\angle(a, b)$ is the number in $[0, \pi]$ that satisfies

$$
a^{T} b=\|a\|\|b\| \cos (\angle(a, b))
$$

- coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

$\theta=\angle(a, b)$

- $\theta=\pi / 2=90^{\circ}: a$ and b are orthogonal, written $a \perp b\left(a^{T} b=0\right)$
- $\theta=0: a$ and b are aligned ($a^{T} b=\|a\|\|b\|$)
- $\theta=\pi=180^{\circ}: a$ and b are anti-aligned ($\left.a^{T} b=-\|a\|\|b\|\right)$
- $\theta \leq \pi / 2=90^{\circ}: a$ and b make an acute angle ($a^{T} b \geq 0$)
- $\theta \geq \pi / 2=90^{\circ}: a$ and b make an obtuse angle ($a^{T} b \leq 0$)

Spherical distance

if a, b are on sphere of radius R, distance along the sphere is $R \angle(a, b)$

Document dissimilarity by angles

- measure dissimilarity by angle of word count histogram vectors
- pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans Day		Memorial Day	Academy	Golden Globe Super Bowl
	0	60.6	85.7	87.0	87.7
Veterans Day	0	0			
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	58.7	85.7
Golden Globe A.	87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

Correlation coefficient

- vectors a and b, and de-meaned vectors

$$
\tilde{a}=a-\mathbf{a v g}(a) \mathbf{1}, \quad \tilde{b}=b-\mathbf{a v g}(b) \mathbf{1}
$$

- correlation coefficient (between a and b, with $\tilde{a} \neq 0, \tilde{b} \neq 0$)

$$
\rho=\frac{\tilde{a}^{T} \tilde{b}}{\|\tilde{a}\|\|\tilde{b}\|}
$$

- $\rho=\cos \angle(\tilde{a}, \tilde{b})$
- $\rho=0: a$ and b are uncorrelated
- $\rho>0.8$ (or so): a and b are highly correlated
- $\rho<-0.8$ (or so): a and b are highly anti-correlated
- very roughly: highly correlated means a_{i} and b_{i} are typically both above (below) their means together

Examples

$$
\rho=97 \%
$$

$$
\rho=-99 \%
$$

Examples

- highly correlated vectors:
- rainfall time series at nearby locations
- daily returns of similar companies in same industry
- word count vectors of closely related documents (e.g., same author, topic, ...)
- sales of shoes and socks (at different locations or periods)
- approximately uncorrelated vectors
- unrelated vectors
- audio signals (even different tracks in multi-track recording)
- (somewhat) negatively correlated vectors
- daily temperatures in Palo Alto and Melbourne

