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Linear dependence

I set of n-vectors {a1, . . . ,ak} (with k � 1) is linearly dependent if

�1a1 + · · · + �kak = 0

holds for some �1, . . . , �k, that are not all zero

I equivalent to: at least one ai is a linear combination of the others

I we say ‘a1, . . . ,ak are linearly dependent’

I {a1} is linearly dependent only if a1 = 0

I {a1,a2} is linearly dependent only if one ai is a multiple of the other

I for more than two vectors, there is no simple to state condition
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Example

I the vectors

a1 =

2666664
0.2
�7
8.6

3777775
, a2 =

2666664
�0.1

2
�1

3777775
, a3 =

2666664
0
�1
2.2

3777775
are linearly dependent, since a1 + 2a2 � 3a3 = 0

I can express any of them as linear combination of the other two, e.g.,

a2 = (�1/2)a1 + (3/2)a3
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Linear independence

I set of n-vectors {a1, . . . ,ak} (with k � 1) is linearly independent if it is not
linearly dependent, i.e.,

�1a1 + · · · + �kak = 0

holds only when �1 = · · · = �k = 0

I we say ‘a1, . . . ,ak are linearly independent’

I equivalent to: no ai is a linear combination of the others

I example: the unit n-vectors e1, . . . ,en are linearly independent
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Linear combinations of linearly independent vectors

I suppose x is linear combination of linearly independent vectors a1, . . . ,ak:

x = �1a1 + · · · + �kak

I the coe�cients �1, . . . , �k are unique, i.e., if

x = �1a1 + · · · + �kak

then �i = �i for i = 1, . . . ,k

I this means that (in principle) we can deduce the coe�cients from x

I to see why, note that

(�1 � �1)a1 + · · · + (�k � �k)ak = 0

and so (by linear independence) �1 � �1 = · · · = �k � �k = 0
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Independence-dimension inequality

I a linearly independent set of n-vectors can have at most n elements

I put another way: any set of n + 1 or more n-vectors is linearly dependent
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Basis

I a set of n linearly independent n-vectors a1, . . . ,an is called a basis

I any n-vector b can be expressed as a linear combination of them:

b = �1a1 + · · · + �nan

for some �1, . . . , �n

I and these coe�cients are unique

I formula above is called expansion of b in the a1, . . . ,an basis

I example: e1, . . . ,en is a basis, expansion of b is

b = b1e1 + · · · + bnen
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Orthonormal vectors

I set of n-vectors a1, . . . ,ak are (mutually) orthogonal if ai ? aj for i , j

I they are normalized if kaik = 1 for i = 1, . . . ,k

I they are orthonormal if both hold

I can be expressed using inner products as

a
T

i
aj =

(
1 i = j

0 i , j

I orthonormal sets of vectors are linearly independent

I by independence-dimension inequality, must have k  n

I when k = n, a1, . . . ,an are an orthonormal basis
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Examples of orthonormal bases

I standard unit n-vectors e1, . . . ,en

I the 3-vectors

2666664
0
0
�1

3777775
,

1p
2

2666664
1
1
0

3777775
,

1p
2

2666664
1
�1

0

3777775
I the 2-vectors shown below
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Orthonormal expansion

I if a1, . . . ,an is an orthonormal basis, we have for any n-vector x

x = (aT

1 x)a1 + · · · + (aT

n
x)an

I called orthonormal expansion of x (in the orthonormal basis)

I to verify formula, take inner product of both sides with ai
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Gram–Schmidt (orthogonalization) algorithm

I an algorithm to check if a1, . . . ,ak are linearly independent

I we’ll see later it has many other uses
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Gram–Schmidt algorithm

given n-vectors a1, . . . ,ak

for i = 1, . . . ,k
1. Orthogonalization: q̃i = ai � (qT

1 ai)q1 � · · · � (qT

i�1ai)qi�1
2. Test for linear dependence: if q̃i = 0, quit
3. Normalization: qi = q̃i/kq̃ik

I if G–S does not stop early (in step 2), a1, . . . ,ak are linearly independent

I if G–S stops early in iteration i = j, then aj is a linear combination of
a1, . . . ,aj�1 (so a1, . . . ,ak are linearly dependent)
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Example

a1
a2

q̃1
a2

q1
a2

q1
a2 �(qT

1 a2)q1

q̃2

q1

q2
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Analysis

let’s show by induction that q1, . . . ,qi are orthonormal

I assume it’s true for i � 1

I orthogonalization step ensures that

q̃i ? q1, . . . , q̃i ? qi�1

I to see this, take inner product of both sides with qj, j < i

q
T

j
q̃i = q

T

j
ai � (qT

1 ai)(qT

j
q1) � · · · � (qT

i�1ai)(qT

j
qi�1)

= q
T

j
ai � q

T

j
ai = 0

I so qi ? q1, . . . ,qi ? qi�1

I normalization step ensures that kqik = 1
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Analysis

assuming G–S has not terminated before iteration i

I ai is a linear combination of q1, . . . ,qi:

ai = kq̃ikqi + (qT

1 ai)q1 + · · · + (qT

i�1ai)qi�1

I qi is a linear combination of a1, . . . ,ai: by induction on i,

qi = (1/kq̃ik)
⇣
ai � (qT

1 ai)q1 � · · · � (qT

i�1ai)qi�1
⌘

and (by induction assumption) each q1, . . . ,qi�1 is a linear combination of
a1, . . . ,ai�1
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Early termination

suppose G–S terminates in step j

I aj is linear combination of q1, . . . ,qj�1

aj = (qT

1 aj)q1 + · · · + (qT

j�1aj)qj�1

I and each of q1, . . . ,qj�1 is linear combination of a1, . . . ,aj�1

I so aj is a linear combination of a1, . . . ,aj�1
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