## 5. Linear independence

## Outline

## Linear independence

## Basis

Orthonormal vectors

Gram-Schmidt algorithm

## Linear dependence

- set of $n$-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ (with $k \geq 1$ ) is linearly dependent if

$$
\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}=0
$$

holds for some $\beta_{1}, \ldots, \beta_{k}$, that are not all zero

- equivalent to: at least one $a_{i}$ is a linear combination of the others
- we say ' $a_{1}, \ldots, a_{k}$ are linearly dependent'
- $\left\{a_{1}\right\}$ is linearly dependent only if $a_{1}=0$
- $\left\{a_{1}, a_{2}\right\}$ is linearly dependent only if one $a_{i}$ is a multiple of the other
- for more than two vectors, there is no simple to state condition


## Example

- the vectors

$$
a_{1}=\left[\begin{array}{c}
0.2 \\
-7 \\
8.6
\end{array}\right], \quad a_{2}=\left[\begin{array}{c}
-0.1 \\
2 \\
-1
\end{array}\right], \quad a_{3}=\left[\begin{array}{c}
0 \\
-1 \\
2.2
\end{array}\right]
$$

are linearly dependent, since $a_{1}+2 a_{2}-3 a_{3}=0$

- can express any of them as linear combination of the other two, e.g.,

$$
a_{2}=(-1 / 2) a_{1}+(3 / 2) a_{3}
$$

## Linear independence

- set of $n$-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ (with $k \geq 1$ ) is linearly independent if it is not linearly dependent, i.e.,

$$
\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}=0
$$

holds only when $\beta_{1}=\cdots=\beta_{k}=0$

- we say ' $a_{1}, \ldots, a_{k}$ are linearly independent'
- equivalent to: no $a_{i}$ is a linear combination of the others
- example: the unit $n$-vectors $e_{1}, \ldots, e_{n}$ are linearly independent


## Linear combinations of linearly independent vectors

- suppose $x$ is linear combination of linearly independent vectors $a_{1}, \ldots, a_{k}$ :

$$
x=\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}
$$

- the coefficients $\beta_{1}, \ldots, \beta_{k}$ are unique, i.e., if

$$
x=\gamma_{1} a_{1}+\cdots+\gamma_{k} a_{k}
$$

then $\beta_{i}=\gamma_{i}$ for $i=1, \ldots, k$

- this means that (in principle) we can deduce the coefficients from $x$
- to see why, note that

$$
\left(\beta_{1}-\gamma_{1}\right) a_{1}+\cdots+\left(\beta_{k}-\gamma_{k}\right) a_{k}=0
$$

and so (by linear independence) $\beta_{1}-\gamma_{1}=\cdots=\beta_{k}-\gamma_{k}=0$

## Outline

## Linear independence

## Basis

## Orthonormal vectors

## Gram-Schmidt algorithm

## Independence-dimension inequality

- a linearly independent set of $n$-vectors can have at most $n$ elements
- put another way: any set of $n+1$ or more $n$-vectors is linearly dependent


## Basis

- a set of $n$ linearly independent $n$-vectors $a_{1}, \ldots, a_{n}$ is called a basis
- any $n$-vector $b$ can be expressed as a linear combination of them:

$$
b=\beta_{1} a_{1}+\cdots+\beta_{n} a_{n}
$$

for some $\beta_{1}, \ldots, \beta_{n}$

- and these coefficients are unique
- formula above is called expansion of $b$ in the $a_{1}, \ldots, a_{n}$ basis
- example: $e_{1}, \ldots, e_{n}$ is a basis, expansion of $b$ is

$$
b=b_{1} e_{1}+\cdots+b_{n} e_{n}
$$

## Outline

## Linear independence

## Basis

Orthonormal vectors

## Gram-Schmidt algorithm

## Orthonormal vectors

- set of $n$-vectors $a_{1}, \ldots, a_{k}$ are (mutually) orthogonal if $a_{i} \perp a_{j}$ for $i \neq j$
- they are normalized if $\left\|a_{i}\right\|=1$ for $i=1, \ldots, k$
- they are orthonormal if both hold
- can be expressed using inner products as

$$
a_{i}^{T} a_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- orthonormal sets of vectors are linearly independent
- by independence-dimension inequality, must have $k \leq n$
- when $k=n, a_{1}, \ldots, a_{n}$ are an orthonormal basis


## Examples of orthonormal bases

- standard unit $n$-vectors $e_{1}, \ldots, e_{n}$
- the 3-vectors

$$
\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

- the 2 -vectors shown below



## Orthonormal expansion

- if $a_{1}, \ldots, a_{n}$ is an orthonormal basis, we have for any $n$-vector $x$

$$
x=\left(a_{1}^{T} x\right) a_{1}+\cdots+\left(a_{n}^{T} x\right) a_{n}
$$

- called orthonormal expansion of $x$ (in the orthonormal basis)
- to verify formula, take inner product of both sides with $a_{i}$


## Outline

## Linear independence

## Basis

## Orthonormal vectors

## Gram-Schmidt algorithm

## Gram-Schmidt (orthogonalization) algorithm

- an algorithm to check if $a_{1}, \ldots, a_{k}$ are linearly independent
- we'll see later it has many other uses


## Gram-Schmidt algorithm

given $n$-vectors $a_{1}, \ldots, a_{k}$
for $i=1, \ldots, k$

1. Orthogonalization: $\tilde{q}_{i}=a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\cdots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}$
2. Test for linear dependence: if $\tilde{q}_{i}=0$, quit
3. Normalization: $q_{i}=\tilde{q}_{i} /\left\|\tilde{q}_{i}\right\|$

- if G-S does not stop early (in step 2), $a_{1}, \ldots, a_{k}$ are linearly independent
- if G-S stops early in iteration $i=j$, then $a_{j}$ is a linear combination of $a_{1}, \ldots, a_{j-1}$ (so $a_{1}, \ldots, a_{k}$ are linearly dependent)


## Example



## Analysis

let's show by induction that $q_{1}, \ldots, q_{i}$ are orthonormal

- assume it's true for $i-1$
- orthogonalization step ensures that

$$
\tilde{q}_{i} \perp q_{1}, \ldots, \tilde{q}_{i} \perp q_{i-1}
$$

- to see this, take inner product of both sides with $q_{j}, j<i$

$$
\begin{aligned}
q_{j}^{T} \tilde{q}_{i} & =q_{j}^{T} a_{i}-\left(q_{1}^{T} a_{i}\right)\left(q_{j}^{T} q_{1}\right)-\cdots-\left(q_{i-1}^{T} a_{i}\right)\left(q_{j}^{T} q_{i-1}\right) \\
& =q_{j}^{T} a_{i}-q_{j}^{T} a_{i}=0
\end{aligned}
$$

- $\operatorname{so} q_{i} \perp q_{1}, \ldots, q_{i} \perp q_{i-1}$
- normalization step ensures that $\left\|q_{i}\right\|=1$


## Analysis

assuming G-S has not terminated before iteration $i$

- $a_{i}$ is a linear combination of $q_{1}, \ldots, q_{i}$ :

$$
a_{i}=\left\|\tilde{q}_{i}\right\| q_{i}+\left(q_{1}^{T} a_{i}\right) q_{1}+\cdots+\left(q_{i-1}^{T} a_{i}\right) q_{i-1}
$$

- $q_{i}$ is a linear combination of $a_{1}, \ldots, a_{i}$ : by induction on $i$,

$$
q_{i}=\left(1 /\left\|\tilde{q}_{i}\right\|\right)\left(a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\cdots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}\right)
$$

and (by induction assumption) each $q_{1}, \ldots, q_{i-1}$ is a linear combination of $a_{1}, \ldots, a_{i-1}$

## Early termination

suppose G-S terminates in step $j$

- $a_{j}$ is linear combination of $q_{1}, \ldots, q_{j-1}$

$$
a_{j}=\left(q_{1}^{T} a_{j}\right) q_{1}+\cdots+\left(q_{j-1}^{T} a_{j}\right) q_{j-1}
$$

- and each of $q_{1}, \ldots, q_{j-1}$ is linear combination of $a_{1}, \ldots, a_{j-1}$
- so $a_{j}$ is a linear combination of $a_{1}, \ldots, a_{j-1}$

