6. Matrices

Outline

Matrices

Matrix-vector multiplication

Examples

Matrices

- a matrix is a rectangular array of numbers, e.g.,

$$
\left[\begin{array}{cccc}
0 & 1 & -2.3 & 0.1 \\
1.3 & 4 & -0.1 & 0 \\
4.1 & -1 & 0 & 1.7
\end{array}\right]
$$

- its size is given by (row dimension) \times (column dimension) e.g., matrix above is 3×4
- elements also called entries or coefficients
- $B_{i j}$ is i, j element of matrix B
- i is the row index, j is the column index; indexes start at 1
- two matrices are equal (denoted with =) if they are the same size and corresponding entries are equal

Matrix shapes

an $m \times n$ matrix A is

- tall if $m>n$
- wide if $m<n$
- square if $m=n$

Column and row vectors

- we consider an $n \times 1$ matrix to be an n-vector
- we consider a 1×1 matrix to be a number
- a $1 \times n$ matrix is called a row vector, e.g.,

$$
\left[\begin{array}{llll}
1.2 & -0.3 & 1.4 & 2.6
\end{array}\right]
$$

which is not the same as the (column) vector

$$
\left[\begin{array}{r}
1.2 \\
-0.3 \\
1.4 \\
2.6
\end{array}\right]
$$

Columns and rows of a matrix

- suppose A is an $m \times n$ matrix with entries $A_{i j}$ for $i=1, \ldots, m, j=1, \ldots, n$
- its j th column is (the m-vector)

$$
\left[\begin{array}{c}
A_{1 j} \\
\vdots \\
A_{m j}
\end{array}\right]
$$

- its i th row is (the n-row-vector)

$$
\left[\begin{array}{lll}
A_{i 1} & \cdots & A_{i n}
\end{array}\right]
$$

- slice of matrix: $A_{p: q, r: s}$ is the $(q-p+1) \times(s-r+1)$ matrix

$$
A_{p: q, r: s}=\left[\begin{array}{cccc}
A_{p r} & A_{p, r+1} & \cdots & A_{p s} \\
A_{p+1, r} & A_{p+1, r+1} & \cdots & A_{p+1, s} \\
\vdots & \vdots & & \vdots \\
A_{q r} & A_{q, r+1} & \cdots & A_{q s}
\end{array}\right]
$$

Block matrices

- we can form block matrices, whose entries are matrices, such as

$$
A=\left[\begin{array}{ll}
B & C \\
D & E
\end{array}\right]
$$

where B, C, D, and E are matrices (called submatrices or blocks of A)

- matrices in each block row must have same height (row dimension)
- matrices in each block column must have same width (column dimension)
- example: if

$$
B=\left[\begin{array}{lll}
0 & 2 & 3
\end{array}\right], \quad C=[-1], \quad D=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 5
\end{array}\right], \quad E=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

then

$$
\left[\begin{array}{ll}
B & C \\
D & E
\end{array}\right]=\left[\begin{array}{cccc}
0 & 2 & 3 & -1 \\
2 & 2 & 1 & 4 \\
1 & 3 & 5 & 4
\end{array}\right]
$$

Column and row representation of matrix

- A is an $m \times n$ matrix
- can express as block matrix with its (m-vector) columns a_{1}, \ldots, a_{n}

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]
$$

- or as block matrix with its (n-row-vector) rows b_{1}, \ldots, b_{m}

$$
A=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Examples

- image: $X_{i j}$ is i, j pixel value in a monochrome image
- rainfall data: $A_{i j}$ is rainfall at location i on day j
- multiple asset returns: $R_{i j}$ is return of asset j in period i
- contingency table: $A_{i j}$ is number of objects with first attribute i and second attribute j
- feature matrix: $X_{i j}$ is value of feature i for entity j
in each of these, what do the rows and columns mean?

Graph or relation

- a relation is a set of pairs of objects, labeled $1, \ldots, n$, such as

$$
\mathcal{R}=\{(1,2),(1,3),(2,1),(2,4),(3,4),(4,1)\}
$$

- same as directed graph

- can be represented as $n \times n$ matrix with $A_{i j}=1$ if $(i, j) \in \mathcal{R}$

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Special matrices

- $m \times n$ zero matrix has all entries zero, written as $0_{m \times n}$ or just 0
- identity matrix is square matrix with $I_{i i}=1$ and $I_{i j}=0$ for $i \neq j$, e.g.,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- sparse matrix: most entries are zero
- examples: 0 and I
- can be stored and manipulated efficiently
- $\mathbf{n n z}(A)$ is number of nonzero entries

Diagonal and triangular matrices

- diagonal matrix: square matrix with $A_{i j}=0$ when $i \neq j$
- $\boldsymbol{\operatorname { d i a g }}\left(a_{1}, \ldots, a_{n}\right)$ denotes the diagonal matrix with $A_{i i}=a_{i}$ for $i=1, \ldots, n$
- example:

$$
\operatorname{diag}(0.2,-3,1.2)=\left[\begin{array}{rrr}
0.2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1.2
\end{array}\right]
$$

- lower triangular matrix: $A_{i j}=0$ for $i<j$
- upper triangular matrix: $A_{i j}=0$ for $i>j$
- examples:

$$
\left[\begin{array}{rrr}
1 & -1 & 0.7 \\
0 & 1.2 & -1.1 \\
0 & 0 & 3.2
\end{array}\right] \text { (upper triangular), } \quad\left[\begin{array}{rr}
-0.6 & 0 \\
-0.3 & 3.5
\end{array}\right] \text { (lower triangular) }
$$

Transpose

- the transpose of an $m \times n$ matrix A is denoted A^{T}, and defined by

$$
\left(A^{T}\right)_{i j}=A_{j i}, \quad i=1, \ldots, n, \quad j=1, \ldots, m
$$

- for example,

$$
\left[\begin{array}{ll}
0 & 4 \\
7 & 0 \\
3 & 1
\end{array}\right]^{T}=\left[\begin{array}{lll}
0 & 7 & 3 \\
4 & 0 & 1
\end{array}\right]
$$

- transpose converts column to row vectors (and vice versa)
- $\left(A^{T}\right)^{T}=A$

Addition, subtraction, and scalar multiplication

- (just like vectors) we can add or subtract matrices of the same size:

$$
(A+B)_{i j}=A_{i j}+B_{i j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

(subtraction is similar)

- scalar multiplication:

$$
(\alpha A)_{i j}=\alpha A_{i j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- many obvious properties, e.g.,

$$
A+B=B+A, \quad \alpha(A+B)=\alpha A+\alpha B, \quad(A+B)^{T}=A^{T}+B^{T}
$$

Matrix norm

- for $m \times n$ matrix A, we define

$$
\|A\|=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}\right)^{1 / 2}
$$

- agrees with vector norm when $n=1$
- satisfies norm properties:

$$
\begin{aligned}
& \|\alpha A\|=|\alpha|\|A\| \\
& \|A+B\| \leq\|A\|+\|B\| \\
& \|A\| \geq 0 \\
& \|A\|=0 \text { only if } A=0
\end{aligned}
$$

- distance between two matrices: $\|A-B\|$
- (there are other matrix norms, which we won't use)

Outline

Matrices

Matrix-vector multiplication

Examples

Matrix-vector product

- matrix-vector product of $m \times n$ matrix A, n-vector x, denoted $y=A x$, with

$$
y_{i}=A_{i 1} x_{1}+\cdots+A_{i n} x_{n}, \quad i=1, \ldots, m
$$

- for example,

$$
\left[\begin{array}{rrr}
0 & 2 & -1 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4
\end{array}\right]
$$

Row interpretation

- $y=A x$ can be expressed as

$$
y_{i}=b_{i}^{T} x, \quad i=1, \ldots, m
$$

where $b_{1}^{T}, \ldots, b_{m}^{T}$ are rows of A

- so $y=A x$ is a 'batch' inner product of all rows of A with x
- example: $A \mathbf{1}$ is vector of row sums of matrix A

Column interpretation

- $y=A x$ can be expressed as

$$
y=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n}
$$

where a_{1}, \ldots, a_{n} are columns of A

- so $y=A x$ is linear combination of columns of A, with coefficients x_{1}, \ldots, x_{n}
- important example: $A e_{j}=a_{j}$
- columns of A are linearly independent if $A x=0$ implies $x=0$

Outline

Matrices

Matrix-vector multiplication

Examples

General examples

- $0 x=0$, i.e., multiplying by zero matrix gives zero
- $I x=x$, i.e., multiplying by identity matrix does nothing
- inner product $a^{T} b$ is matrix-vector product of $1 \times n$ matrix a^{T} and n-vector b
- $\tilde{x}=A x$ is de-meaned version of x, with

$$
A=\left[\begin{array}{cccc}
1-1 / n & -1 / n & \cdots & -1 / n \\
-1 / n & 1-1 / n & \cdots & -1 / n \\
\vdots & & \ddots & \vdots \\
-1 / n & -1 / n & \cdots & 1-1 / n
\end{array}\right]
$$

Difference matrix

- $(n-1) \times n$ difference matrix is

$$
D=\left[\begin{array}{rrrrrrr}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 & 0 \\
& & \ddots & \ddots & & & \\
& & & \ddots & \ddots & & \\
0 & 0 & 0 & \cdots & -1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right]
$$

$y=D x$ is $(n-1)$-vector of differences of consecutive entries of x :

$$
D x=\left[\begin{array}{c}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
\vdots \\
x_{n}-x_{n-1}
\end{array}\right]
$$

- Dirichlet energy: $\|D x\|^{2}$ is measure of wiggliness for x a time series

Return matrix - portfolio vector

- R is $T \times n$ matrix of asset returns
- $R_{i j}$ is return of asset j in period i (say, in percentage)
- n-vector w gives portfolio (investments in the assets)
- T-vector $R w$ is time series of the portfolio return
- $\operatorname{avg}(R w)$ is the portfolio (mean) return, $\boldsymbol{\operatorname { s t d }}(R w)$ is its risk

Feature matrix - weight vector

- $X=\left[\begin{array}{lll}x_{1} & \cdots & x_{N}\end{array}\right]$ is $n \times N$ feature matrix
- column x_{j} is feature n-vector for object or example j
- $X_{i j}$ is value of feature i for example j
- n-vector w is weight vector
- $s=X^{T} w$ is vector of scores for each example; $s_{j}=x_{j}^{T} w$

Input - output matrix

- A is $m \times n$ matrix
- $y=A x$
- n-vector x is input or action
- m-vector y is output or result
- $A_{i j}$ is the factor by which y_{i} depends on x_{j}
- $A_{i j}$ is the gain from input j to output i
- e.g., if A is lower triangular, then y_{i} only depends on x_{1}, \ldots, x_{i}

