7. Matrix examples

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Geometric transformations

- many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication $y=A x$
- for example, rotation by θ :

$$
y=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] x
$$

(to get the entries, look at $A e_{1}$ and $A e_{2}$)

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Selectors

- an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$
A=\left[\begin{array}{c}
e_{k_{1}}^{T} \\
\vdots \\
e_{k_{m}}^{T}
\end{array}\right]
$$

- multiplying by A selects entries of x :

$$
A x=\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{m}}\right)
$$

- example: the $m \times 2 m$ matrix

$$
A=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

'down-samples' by 2 : if x is a $2 m$-vector then $y=A x=\left(x_{1}, x_{3}, \ldots, x_{2 m-1}\right)$

- other examples: image cropping, permutation, ...

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Incidence matrix

- graph with n vertices or nodes, m (directed) edges or links
- incidence matrix is $n \times m$ matrix

$$
A_{i j}=\left\{\begin{aligned}
1 & \text { edge } j \text { points to node } i \\
-1 & \text { edge } j \text { points from node } i \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- example with $n=4, m=5$:

$$
A=\left[\begin{array}{rrrrr}
-1 & -1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Flow conservation

- m-vector x gives flows (of something) along the edges
- examples: heat, money, power, mass, people, ...
- $x_{j}>0$ means flow follows edge direction
- $A x$ is n-vector that gives the total or net flows
- $(A x)_{i}$ is the net flow into node i
- $A x=0$ is flow conservation; x is called a circulation

Potentials and Dirichlet energy

- suppose v is an n-vector, called a potential
- v_{i} is potential value at node i
- $u=A^{T} v$ is an m-vector of potential differences across the m edges
- $u_{j}=v_{l}-v_{k}$, where edge j goes from k to node l
- Dirichlet energy is $\mathcal{D}(v)=\left\|A^{T} v\right\|^{2}$,

$$
\mathcal{D}(v)=\sum_{\text {edges }(k, l)}\left(v_{l}-v_{k}\right)^{2}
$$

(sum of squares of potential differences across the edges)

- $\mathcal{D}(v)$ is small when potential values of neighboring nodes are similar

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Convolution

- for n-vector a, m-vector b, the convolution $c=a * b$ is the $(n+m-1)$-vector

$$
c_{k}=\sum_{i+j=k+1} a_{i} b_{j}, \quad k=1, \ldots, n+m-1
$$

- for example with $n=4, m=3$, we have

$$
\begin{aligned}
& c_{1}=a_{1} b_{1} \\
& c_{2}=a_{1} b_{2}+a_{2} b_{1} \\
& c_{3}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1} \\
& c_{4}=a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1} \\
& c_{5}=a_{3} b_{3}+a_{4} b_{2} \\
& c_{6}=a_{4} b_{3}
\end{aligned}
$$

- example: $(1,0,-1) *(2,1,-1)=(2,1,-3,-1,1)$

Polynomial multiplication

- a and b are coefficients of two polynomials:

$$
p(x)=a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}, \quad q(x)=b_{1}+b_{2} x+\cdots+b_{m} x^{m-1}
$$

- convolution $c=a * b$ gives the coefficients of the product $p(x) q(x)$:

$$
p(x) q(x)=c_{1}+c_{2} x+\cdots+c_{n+m-1} x^{n+m-2}
$$

- this gives simple proofs of many properties of convolution; for example,

$$
\begin{aligned}
& a * b=b * a \\
& (a * b) * c=a *(b * c) \\
& a * b=0 \text { only if } a=0 \text { or } b=0
\end{aligned}
$$

Toeplitz matrices

- can express $c=a * b$ using matrix-vector multiplication as $c=T(b) a$, with

$$
T(b)=\left[\begin{array}{cccc}
b_{1} & 0 & 0 & 0 \\
b_{2} & b_{1} & 0 & 0 \\
b_{3} & b_{2} & b_{1} & 0 \\
0 & b_{3} & b_{2} & b_{1} \\
0 & 0 & b_{3} & b_{2} \\
0 & 0 & 0 & b_{3}
\end{array}\right]
$$

- $T(b)$ is a Toeplitz matrix (values on diagonals are equal)

Moving average of time series

- n-vector x represents a time series
- convolution $y=a * x$ with $a=(1 / 3,1 / 3,1 / 3)$ is 3-period moving average:

$$
y_{k}=\frac{1}{3}\left(x_{k}+x_{k-1}+x_{k-2}\right), \quad k=1,2, \ldots, n+2
$$

(with x_{k} interpreted as zero for $k<1$ and $k>n$)

Input-output convolution system

- m-vector u represents a time series input
- m+n-1 vector y represents a time series output
- $y=h * u$ is a convolution model
- n-vector h is called the system impulse response
- we have

$$
y_{i}=\sum_{j=1}^{n} u_{i-j+1} h_{j}
$$

(interpreting u_{k} as zero for $k<n$ or $k>n$)

- interpretation: y_{i}, output at time i is a linear combination of u_{i}, \ldots, u_{i-n+1}
- h_{3} is the factor by which current output depends on what the input was 2 time steps before

