7. Matrix examples

Geometric transformations

Selectors

Incidence matrix

Convolution

Geometric transformations

- many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication y = Ax
- for example, rotation by θ :

$$y = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} x$$

(to get the entries, look at Ae_1 and Ae_2)

Geometric transformations

Selectors

Incidence matrix

Convolution

Selectors

• an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \begin{bmatrix} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{bmatrix}$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \ldots, x_{k_m})$$

• example: the $m \times 2m$ matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

'down-samples' by 2: if x is a 2m-vector then $y = Ax = (x_1, x_3, \dots, x_{2m-1})$

other examples: image cropping, permutation, ...

Geometric transformations

Selectors

Incidence matrix

Convolution

Incidence matrix

- graph with n vertices or nodes, m (directed) edges or links
- incidence matrix is $n \times m$ matrix

$$A_{ij} = \begin{cases} 1 & \text{edge } j \text{ points to node } i \\ -1 & \text{edge } j \text{ points from node } i \\ 0 & \text{otherwise} \end{cases}$$

• example with n = 4, m = 5:

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Flow conservation

- *m*-vector *x* gives flows (of something) along the edges
- examples: heat, money, power, mass, people, ...
- $x_j > 0$ means flow follows edge direction
- Ax is n-vector that gives the total or net flows
- $(Ax)_i$ is the net flow into node *i*
- Ax = 0 is flow conservation; x is called a circulation

Potentials and Dirichlet energy

- suppose v is an n-vector, called a potential
- v_i is potential value at node i
- $u = A^T v$ is an *m*-vector of *potential differences* across the *m* edges
- $u_j = v_l v_k$, where edge *j* goes from *k* to node *l*
- Dirichlet energy is $\mathcal{D}(v) = ||A^T v||^2$,

$$\mathcal{D}(v) = \sum_{\text{edges } (k,l)} (v_l - v_k)^2$$

(sum of squares of potential differences across the edges)

• $\mathcal{D}(v)$ is small when potential values of neighboring nodes are similar

Geometric transformations

Selectors

Incidence matrix

Convolution

Introduction to Applied Linear Algebra

Convolution

▶ for *n*-vector *a*, *m*-vector *b*, the *convolution* c = a * b is the (n + m - 1)-vector

$$c_k = \sum_{i+j=k+1} a_i b_j, \quad k = 1, \dots, n+m-1$$

• for example with n = 4, m = 3, we have

$$c_{1} = a_{1}b_{1}$$

$$c_{2} = a_{1}b_{2} + a_{2}b_{1}$$

$$c_{3} = a_{1}b_{3} + a_{2}b_{2} + a_{3}b_{1}$$

$$c_{4} = a_{2}b_{3} + a_{3}b_{2} + a_{4}b_{1}$$

$$c_{5} = a_{3}b_{3} + a_{4}b_{2}$$

$$c_{6} = a_{4}b_{3}$$

• example: (1,0,-1) * (2,1,-1) = (2,1,-3,-1,1)

Polynomial multiplication

► *a* and *b* are coefficients of two polynomials:

$$p(x) = a_1 + a_2 x + \dots + a_n x^{n-1}, \qquad q(x) = b_1 + b_2 x + \dots + b_m x^{m-1}$$

• convolution c = a * b gives the coefficients of the product p(x)q(x):

$$p(x)q(x) = c_1 + c_2x + \dots + c_{n+m-1}x^{n+m-2}$$

this gives simple proofs of many properties of convolution; for example,

$$a * b = b * a$$

(a * b) * c = a * (b * c)
$$a * b = 0 \text{ only if } a = 0 \text{ or } b = 0$$

Toeplitz matrices

• can express c = a * b using matrix-vector multiplication as c = T(b)a, with

$$T(b) = \begin{bmatrix} b_1 & 0 & 0 & 0 \\ b_2 & b_1 & 0 & 0 \\ b_3 & b_2 & b_1 & 0 \\ 0 & b_3 & b_2 & b_1 \\ 0 & 0 & b_3 & b_2 \\ 0 & 0 & 0 & b_3 \end{bmatrix}$$

• T(b) is a Toeplitz matrix (values on diagonals are equal)

Moving average of time series

- *n*-vector *x* represents a time series
- convolution y = a * x with a = (1/3, 1/3, 1/3) is 3-period *moving average*:

$$y_k = \frac{1}{3}(x_k + x_{k-1} + x_{k-2}), \quad k = 1, 2, \dots, n+2$$

(with x_k interpreted as zero for k < 1 and k > n)

Introduction to Applied Linear Algebra

Input-output convolution system

- *m*-vector *u* represents a time series *input*
- m + n 1 vector y represents a time series *output*
- y = h * u is a convolution model
- *n*-vector *h* is called the *system impulse response*
- we have

$$y_i = \sum_{j=1}^n u_{i-j+1} h_j$$

(interpreting u_k as zero for k < n or k > n)

- interpretation: y_i , output at time *i* is a linear combination of u_i, \ldots, u_{i-n+1}
- h₃ is the factor by which current output depends on what the input was 2 time steps before