ASE6029 Linear optimal control: Homework \#3

1) $L Q R$ with affine dynamics. Suppose $Q_{0}, \ldots, Q_{N} \geq 0, R_{0}, \ldots, R_{N-1}>0$, and consider the following linear quadratic regulator design problem under affine dynamical constraints with A, B, and b.

$$
\begin{aligned}
\underset{u_{0}, \ldots, u_{N-1}}{\operatorname{minimize}} & \sum_{k=0}^{N-1}\left(x_{k}^{T} Q_{k} x_{k}+u_{k}^{T} R_{k} u_{k}\right)+x_{N}^{T} Q_{N} x_{N} \\
\text { subject to } & x_{k+1}=A x_{k}+B u_{k}+b, \quad \forall k \in\{0, \ldots, N-1\}
\end{aligned}
$$

Show that the optimal solution is affine in x and is explicitly given by

$$
u_{k}=K_{k} x_{k}+l_{k}
$$

where the control gains are given by

$$
\begin{aligned}
K_{k} & =-\left(B^{T} P_{k+1} B+R_{k}\right)^{-1} B^{T} P_{k+1} A \\
l_{k} & =-\left(B^{T} P_{k+1} B+R_{k}\right)^{-1} B^{T}\left(P_{k+1} b+q_{k+1}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
P_{k} & =Q_{k}+A^{T} P_{k+1} A-A^{T} P_{k+1} B\left(B^{T} P_{k+1} B+R_{k}\right)^{-1} B^{T} P_{k+1} A \\
q_{k} & =\left(A+B K_{k}\right)^{T}\left(P_{k+1} b+q_{k+1}\right)
\end{aligned}
$$

computed by backward recursion from $P_{N}=Q_{N}$ and $q_{N}=0$.
Hint: Assume that the value function at step k is quadratic with

$$
\begin{aligned}
V_{k}(z) & =z^{T} P_{k} z+2 q_{k}^{T} z+r_{k} \\
& =\left[\begin{array}{c}
z \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P_{k} & q_{k} \\
q_{k}^{T} & r_{k}
\end{array}\right]\left[\begin{array}{c}
z \\
1
\end{array}\right] .
\end{aligned}
$$

