ASE7030 Convex optimization: Homework \#1

1) Intersection of convex sets. Show that the intersection of convex sets is convex. That is, for convex $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$,

$$
\mathcal{C}=\mathcal{C}_{1} \cap \cdots \cap \mathcal{C}_{n}
$$

is convex.
2) Sum of convex functions. Show that the sum of convex functions is convex. That is, for convex $f_{1}(x), \ldots, f_{n}(x)$,

$$
f(x)=f_{1}(x)+\cdots+f_{n}(x)
$$

is convex.
3) Rotated cone. The following set in \mathbb{R}^{n},

$$
\mathcal{Q}_{\mathrm{rot}}^{n}=\left\{x \mid 2 x_{1} x_{2} \geq x_{3}^{2}+\cdots+x_{n}^{2}, x_{1}, x_{2} \geq 0\right\}
$$

is called a rotated cone in \mathbb{R}^{n}. Show that the following sets are convex.
a) $\mathcal{Q}_{\text {rot }}^{n}$
b) $\mathcal{C}=\{(t, x) \mid t x \geq 1, x \geq 0\}$
c) $\mathcal{C}=\{(t, x)| | t \mid \leq \sqrt{x}, x \geq 0\}$
d) $\mathcal{C}=\left\{(x, y, t) \mid x^{T} x / y \leq t, y>0\right\}$
4) Farkas' lemma. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Show that exactly one of the following two assertions is true:
a) There exists an $x \in \mathbb{R}^{n}$ such that $A x=b$ and $x \geq 0$.
b) There exists a $y \in \mathbb{R}^{m}$ such that $A^{T} y \geq 0$ and $b^{T} y<0$.
5) Degenerate quadratic function. Consider the following quadratic function with $P \geq 0$.

$$
f(x)=x^{T} P x+2 q^{T} x+r
$$

a) Find the condition on P and q that makes the above function bounded below.
b) Now, suppose that the above condition holds. Parameterize all solutions that minimize $f(x)$.

