ASE7030 Convex optimization: Homework #1

1) Intersection of convex sets. Show that the intersection of convex sets is convex. That is, for convex C_1, \ldots, C_n ,

$$\mathcal{C} = \mathcal{C}_1 \cap \cdots \cap \mathcal{C}_n$$

is convex.

2) Sum of convex functions. Show that the sum of convex functions is convex. That is, for convex $f_1(x), \ldots, f_n(x)$,

$$f(x) = f_1(x) + \dots + f_n(x)$$

is convex.

3) Rotated cone. The following set in \mathbb{R}^n ,

$$\mathcal{Q}_{\text{rot}}^{n} = \left\{ x \mid 2x_{1}x_{2} \ge x_{3}^{2} + \dots + x_{n}^{2}, \ x_{1}, x_{2} \ge 0 \right\}$$

is called a *rotated cone* in \mathbb{R}^n . Show that the following sets are convex.

- a) Q_{rot}^n
- b) $C = \{(t, x) \mid tx \ge 1, x \ge 0\}$
- c) $C = \{(t, x) \mid |t| \le \sqrt{x}, \ x \ge 0\}$
- d) $C = \{(x, y, t) \mid x^T x / y \le t, y > 0 \}$
- 4) Farkas' lemma. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Show that exactly one of the following two assertions is true:
 - a) There exists an $x \in \mathbb{R}^n$ such that Ax = b and $x \ge 0$.
 - b) There exists a $y \in \mathbb{R}^m$ such that $A^T y \geq 0$ and $b^T y < 0$.
- 5) Degenerate quadratic function. Consider the following quadratic function with $P \geq 0$.

$$f(x) = x^T P x + 2a^T x + r$$

- a) Find the condition on P and q that makes the above function bounded below.
- b) Now, suppose that the above condition holds. Parameterize all solutions that minimize f(x).