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Optimizati

General optimization problems:

minixmize f(x)

subjectto x €C

e Finding x that minimizes f(x) while x being inside C.
o Called a convex problem if f(x) is convex and C is convex.

e We are interested in solving such problems with nonconvex C.
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Some examples in control

Jong-Han Kim, Inha University

Multiple drones in formation:
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e Finding minimum energy trajectories for formation shaping
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Some examples in control

Multiple drones in formation:

K T-1

m|n|m|ze Y?Hut H2

t k=1 t=0

subject to Ut(+)1 g ) _ vhvgm 4+ hugk)

)

:1:&)1 = $§k> + (1 — O.5fyh)hv§k> 4 O.5h2u(k>

t
1 < w0l < v,
Wiy e vy
(33<T1), . ,x(TK)) € Xyes

e A convex problem
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Some examples in control

Soft landing guidance:
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e Optimal soft landing guidance for reusable launcher
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Some examples in control

Soft landing guidance:

minimize
u(t)

subject to

t
/  ut))ldt
0

7(t) = g +ult)/m(t),

m(t) = —allut)],

0 < p1 < lu(®)] < p2,
(

Ira@)] < Bro(t),
T(tf> — T'des>
T(tf> =0

e Nonconvex due to the lower bound in thrust

Jong-Han Kim, Inha University



7 Solving optimal control under nonconvex constraints via first order methods Jong-Han Kim, Inha University

Some examples in control

Large divert missile guidance:
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e Computing maneuver command for large divert impact angle guidance
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Some examples in control

Large divert missile guidance:

1T—1
DL 9
minimize Z ||
t=0
subject to  vpi1 = vy — Yhvy 4+ huy,
ri 1 = ot + (1 — 0.5vh)hvr + 0.5h%uy,
utl] <wgps o]l < vgps

UT < Vdes»
I’T < Xdes»

(v, up) = 0

e Nonconvex due to the control-orthogonality condition
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Some examples in control

Multiple drones with

¥ position

y position
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Trajectories
T

P . —— Minimum energy trajectory
optimal collision aveidance trajectory
@ initial position
il X Waypoint
il |1V J  Destination
50
30
40
~—— Minimum energy trajectory —— Minimum energy trajectory
=== Optimal collision avoidance trajectory ~~- optimal collision avoidance trajectory | £
@ Initial position @ initial position g 2
% Waypoint % Waypoint 2
% Destination Y Destination fal
10
20
10
0
0
-30 -20 -10 0 10 20 30 o o 20 2 0 50 60 o B T o P
X position X position x pesition
Trajectories Trajectories Trajectories
—— Minimum energy trajectory
~=- Optimal collision avoidance trajectory
60 ® Initial position 50
X waypoint
% Destination
40
50
< g ¥
g s
g 3
g 2
= =
20
b. 4
30
10
—— Minimum energy trajectory y - - Minimum energy trajectory
- optimal collision avoidance trajectory optimal collision avoidance trajectory
3 ® nitial position @ Iinitial position
% Waypoint 20 [ X Waypoint

Y Destination

J  Destination

-10 o 10 20 30 40 50 60 70
x position

30

X position

70

20 40 60 80
X pesition

e Finding minimum energy trajectories for multiple players with collision

avoidance
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Some examples in control

Multiple drones with collision avoidance:

K T-1

m|n|m|ze YS‘H“t H2

t k=1 t=0

subject to f0§+)1 Lg ) _ Whvgm + hu§k>,

xgl_?l = Jigk) + (1 — 0.57h)hvt(k> + O.5h2u§k),

1 < w0l < v,

(U<Tl>, . ,v<TK>) € Vyes) (xép, . ,:1:<TK>) € Xyes,
(k)

[
let™ = o) > dysy, for L £k

e Nonconvex due to the collision avoidance constraints
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First order methods

First order methods for convex optimization:
e Only requires the first order derivative information
e Compared to the second order methods

e easy to implement and robust
e computationally cheap and memory efficient
e suitable for large-scale or distributed optimization

e but less accurate

e Related topics

e alternating direction method of multipliers
e proximal algorithms
e operator splitting methods

e monotone operators
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First order methods

Alternating direction method of multipliers:

Standard form:

minimize f(x) + g(2)

x,2

subject to Ax + Bz =rc

e Optimizing a separable composite function under linear equality con-
straints

o f(x)and g(z) convex
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First order methods

Alternating direction method of multipliers:

Augmented Lagrangian:

Lp(w,z,y) = f(2) + 9(2) +y' (Ax + Bz = ¢) + (p/2)|| Az + Bz — ¢||”
— f(z) + g(2) + (p/2)||Az + Bz — ¢ + u|)* + const.

with u = y/p.
ADMM iteration:

2" = argmin (f(:zz) + (p/2)||Az + Bz¥ — ¢ + ukHQ)

X

M = argmin (g(z) + (p/2)|Az*T + Bz — ¢ + ukHz)

z
uk+1 _ uk 4 (Ailjk—H 4 leﬁ—l - C>
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First order methods

Standard convex optimization problems:

miniﬂmize f(x)

subjectto x €C

which is equivalent to:

0, ifxeC

T o0, otherwise

minimize f(x) + Io(x) where [p(x) = {

and:

minimize f(x) + Io(2)

x,Z

subjectto x —2 =10
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First order methods

Solving standard convex optimization problems via ADMM:

ADMM iteration:

oM = argmin (f() + (p/2)]lz = 2+ uF|2)

X

zk+1:argmin Io(z) + (p/2 (AR R |
C

Z

A N S S R S

e r-update is a convex optimization problem.
e wu-update is summation and subtraction.

e z-update?
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First order methods

Proximal operator:

The z-update:

K+ — aremin (zc<z> +(p/2) ||z — 2 uk||2)

z

= argmin ||2"! — 2 + |7 = Hp(z¥ ! + o)
zeC
FYI:
zk—i—l — prox C( /€—|—1 Iy )
where

X

, 1
prosa () = asgnin (] 0) + 5l ol

e |n fact, the z- and the z-update are some form of proximal operators.
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First order methods

Solving standard convex optimization problems via ADMM:

With the z-step simplified we have:

21 = argmin ( fla)+ (p)2)|lx — 2F + uk||2)

X

Zk—l—l _ Hc(xk—l_l 4 uk)

A N R S S R 8

where [l () is the orthogonal projection of x onto C.
e In general, computing IIz(x) is another convex optimization problem.

e However in many cases, [I-(x) can be computed exactly, easily and
explicitly.

e Furthermore, the same arguments hold even when C is nonconvex.
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Examples

Multiple drones with collision avoidance:

Original problem:

K T-1
m|n|m|ze J S: Hut H2
t k=1 t=0
(k) _ (k)

subject to v, |} =v; 7 — whvim + huim,
335‘?1 — xgm + (1 — 0.57h)hvt<k) + O.5h2u§k),
CET — xdes»

k [
lat™ = 2V > dypy, for L #
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Examples

Multiple drones with collision avoidance:

Standard form:

minimize  ||u?
u

subject to Au = b,
G,u+ h; € C, fore=1,2,...,.L=K(K—-1)/2

Standard ADMM form:

minimize  ||u|® + Ip(z1) + - - - + Ip(2])

U,21,..-4<],
subject to Au+b=0,
z; = Gyu + h;, fori=1,2,...,.L=K(K—-1)/2
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Examples

Multiple drones with collision avoidance:

Solution approaches:

w1 = argmin WM2+§(NMw+h+w@F
u
L
+ Z |Gju — sz + h; + wa2>
1=1
zf“:HC(GiukHJrhprf), fore=1,...,L
wlgﬂ = wlg + AuF T 4+ b

whtl = wf + Gq;ukJrl — zf“ + h;, fore=1,...,L
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Examples

Problems with collision avoidance constraints:
(k) (1)
th — Iy H > dsafety

Projection onto collision avoidance constraint set:
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Examples

Problems with thrust bounds:

0<p1 < |lwl <p2. w3>0

, —_—

Projection onto a hemispherical shell:
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Examples

Problems with angle constraints between state vectors:
(v, up) < 6 or L(vg,ug) >0

Projection around a state dependent cone:

Ziag <
_— Cl . k+1
/ k+1 =il
Cl / Xi+1
s
/
k+1
/ Zi+1 C
/
, 2
/
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/ d
/ 7} y g
// - , / "
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// 7 xik+1
T 0 9 ke
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Concluding remarks
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Optimal control under nonconvex constraints:
e Some with interesting nonconvex constraints can be handled:

e via applying the ADMM with direct projection operations onto
the nonconvex set

e no approximation/relaxation required

e (Convergence and optimality:

e converges to very good solutions in practice
e global optimality not known in general

e however some results on convergence and global optimality are
being reported recently

e Computational complexity:

e almost equal to that of a single convex optimization problem



