# Boolean Classification 

Jong-Han Kim

EE787 Machine learning
Kyung Hee University

## Boolean classification

## Boolean classification

- supervised learning is called boolean classification when raw output variable $v$ is a categorical that can take two possible values
- we denote these -1 and 1 , and they often correspond to \{false, TRUE or \{Negative, positive\}
- for a data record $u^{i}, v^{i}$, the value $v^{i} \in\{-1,1\}$ is called the class or label
- a boolean classifier predicts label $\hat{v}$ given raw input $u$


## Classification



- here $u \in \mathbf{R}^{2}$
- red points have $v^{i}=-1$, blue points have $v^{i}=1$
- we'd like a predictor that maps any $u \in \mathbf{R}^{2}$ into prediction $\hat{v} \in\{-1,1\}$


## Example: Nearest neighbor classsifier



- given $u$, let $k=\operatorname{argmin}_{k}\left\|u-u^{k}\right\|$, then predict $\hat{v}=v^{k}$
- red region is the set of $u$ for which prediction is -1
- blue region is the set of $u$ for which prediction is 1
- zero training error (all points classified correctly), but perhaps overfit


## Example: Least squares classifier



- embed $x=(1, u)$ and $y=v$, apply least squares regression
- gives $\hat{y}=\theta_{1}+\theta_{2} u_{1}+\theta_{3} u_{2}$
- predict using $\hat{v}=\operatorname{sign}(\hat{y})$
- $11 \%$ of points misclassified at training


## Confusion matrix

## The two types of errors

- measure performance of a specific predictor on a set of $n$ data records
- each data point $i$ has $v^{i} \in\{-1,1\}$
- and corresponding prediction $\hat{v}^{i}=g\left(v^{i}\right) \in\{-1,1\}$
- only four possible values for the data pair $\hat{v}^{i}, v^{i}$ :
- true positive if $\hat{v}^{i}=1$ and $v^{i}=1$
- true negative if $\hat{v}^{i}=-1$ and $v^{i}=-1$
- false negative or type I/ error if $\hat{v}^{i}=-1$ and $v^{i}=1$
- false positive or type I error if $\hat{v}^{i}=1$ and $v^{i}=-1$


## Confusion matrix

- for a predictor and a data set define the confusion matrix

$$
C=\left[\begin{array}{cc}
\# \text { true negatives } & \# \text { false negatives } \\
\# \text { false positives } & \# \text { true positives }
\end{array}\right]=\left[\begin{array}{cc}
C_{\mathrm{tn}} & C_{\mathrm{fn}} \\
C_{\mathrm{fp}} & C_{\mathrm{tp}}
\end{array}\right]
$$

(warning: some people use the transpose of $C$ )

- $C_{\mathrm{tn}}+C_{\mathrm{fn}}+C_{\mathrm{fp}}+C_{\mathrm{tp}}=n$ (total number of examples)
- $N_{\mathrm{n}}=C_{\mathrm{tn}}+C_{\mathrm{fp}}$ is number of negative examples
- $N_{\mathrm{p}}=C_{\mathrm{fn}}+C_{\mathrm{tp}}$ is number of positive examples
- diagonal entries give numbers of correct predictions
- off-diagonal entries give numbers of incorrect predictions of the two types


## Some boolean classification measures

$\downarrow$ confusion matrix $\left[\begin{array}{cc}C_{\mathrm{tn}} & C_{\mathrm{fn}} \\ C_{\mathrm{fp}} & C_{\mathrm{tp}}\end{array}\right]$

- the basic error measures:
- false positive rate is $C_{\mathrm{fp}} / n$
- false negative rate is $C_{\mathrm{fn}} / n$
- error rate is $\left(C_{\mathrm{fn}}+C_{\mathrm{fp}}\right) / n$
- error measures some people use:
- true positive rate or sensitivity or recall is $C_{\mathrm{tp}} / N_{\mathrm{p}}$
- false alarm rate is $C_{f p} / N_{\mathrm{n}}$
- specificity or true negative rate is $C_{\mathrm{tn}} / N_{\mathrm{n}}$
- precision is $C_{\mathrm{tp}} /\left(C_{\mathrm{tp}}+C_{\mathrm{fp}}\right)$


## Neyman-Pearson error

- Neyman-Pearson error over a data set is $\kappa C_{\text {fn }} / n+C_{\text {fp }} / n$
- a scalarization of our two objectives, false positive and false negative rates
- $\kappa$ is how much more false negatives irritate us than false positives
- when $\kappa=1$, the Neyman-Pearson error is the error rate
- we'll use the Neyman-Pearson error as our scalarized measure

ERM

## Embedding

- we embed raw input and output records as $x=\phi(u)$ and $y=\psi(v)$
- $\phi$ is the feature map
- $\psi$ is the identity map, $\psi(v)=v$
- un-embed by $\hat{v}=\operatorname{sign}(\hat{y})$
- equivalent to $\hat{v}=\underset{v \in\{-1,1\}}{\operatorname{argmin}}|\hat{y}-\psi(v)|$
- i.e., choose the nearest boolean value to the (real) prediction $\hat{y}$


## ERM

- given loss function $\ell(\hat{y}, y)$, empirical risk on a data set is

$$
\mathcal{L}=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{y}^{i}, y^{i}\right)
$$

- for linear model $\hat{y}=\theta^{\top} x$, with $\theta \in \mathbf{R}^{d}$,

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta^{\top} x^{i}, y^{i}\right)
$$

- ERM: choose $\theta$ to minimize $\mathcal{L}(\theta)$
- regularized ERM: choose $\theta$ to minimize $\mathcal{L}(\theta)+\lambda r(\theta)$, with $\lambda>0$


## Loss functions for boolean classification

- to apply ERM, we need a loss function on embedded variables $\ell(\hat{y}, y)$
- $y$ can only take values -1 or 1
- but $\hat{y}=\theta^{\top} x \in \mathbf{R}$ can be any real number
- to specify $\ell$, we only need to give two functions (of a scalar $\hat{y}$ ):
- $\ell(\hat{y},-1)$ is how much $\hat{y}$ irritates us when $y=-1$
- $\ell(\hat{y}, 1)$ is how much $\hat{y}$ irritates us when $y=1$
- we can take $\ell(\hat{y}, 1)=\kappa \ell(-\hat{y},-1)$, to reflect that false negatives irritate us a factor $\kappa$ more than false positives

Neyman-Pearson loss

- Neyman-Pearson loss is
$-\ell^{N P}(\hat{y},-1)= \begin{cases}1 & \hat{y} \geq 0 \\ 0 & \hat{y}<0\end{cases}$
$-\ell^{\mathrm{NP}}(\hat{y}, 1)=\kappa l^{\mathrm{NP}}(\hat{y},-1)= \begin{cases}\kappa & \hat{y}<0 \\ 0 & \hat{y} \geq 0\end{cases}$
- empirical Neyman-Pearson risk $\mathcal{L}^{\mathrm{NP}}$ is the Neyman-Pearson error



## The problem with Neyman-Pearson loss

- empirical Neyman-Pearson risk $\mathcal{L}^{\mathrm{NP}}(\theta)$ is not differentiable, or even continuous (and certainly not convex)
- worse, its gradient $\nabla \mathcal{L}^{\mathrm{NP}}(\theta)$ is either zero or undefined
- so an optimizer does not know how to improve the predictor


## Idea of proxy loss

- we get better results using a proxy loss that
- approximates, or at least captures the flavor of, the Neyman-Pearson loss
- is more easily optimized (e.g., is convex or has nonzero derivative)
- we want a proxy loss function
- with $\ell(\hat{y},-1)$ small when $\hat{y}<0$, and larger when $\hat{y}>0$
- with $\ell(\hat{y},+1)$ small when $\hat{y}>0$, and larger when $\hat{y}<0$
- which has other nice characteristics, e.g., differentiable or convex


## Sigmoid loss



- $\ell(\hat{y},-1)=\frac{1}{1+e^{-\hat{y}}}, \quad \ell(\hat{y}, 1)=\kappa \ell(-\hat{y},-1)=\frac{\kappa}{1+e^{\hat{y}}}$
- differentiable approximation of Neyman-Pearson loss
- but not convex


## Logistic loss



- $\ell(\hat{y},-1)=\log \left(1+e^{\hat{y}}\right), \quad \ell(\hat{y}, 1)=\kappa \ell(-\hat{y},-1)=\kappa \log \left(1+e^{-\hat{y}}\right)$
- differentiable and convex approximation of Neyman-Pearson loss


## Hinge loss



- $\ell(\hat{y},-1)=(1+\hat{y})_{+}, \quad \ell(\hat{y}, 1)=\kappa \ell(-\hat{y},-1)=\kappa(1-\hat{y})_{+}$
- nondifferentiable but convex approximation of Neyman-Pearson loss


## Square loss




- $\ell(\hat{y},-1)=(1+\hat{y})^{2}, \quad \ell(\hat{y}, 1)=\kappa \ell(-\hat{y},-1)=\kappa(1-\hat{y})^{2}$
- ERM is least squares problem


## Hubristic loss



- define the hubristic loss (huber + logistic) as

$$
\ell(\hat{y},-1)= \begin{cases}0 & \hat{y}<-1 \\ (\hat{y}+1)^{2} & -1 \leq \hat{y} \leq 0 \\ 1+2 \hat{y} & \hat{y}>0\end{cases}
$$

- $\ell(\hat{y}, 1)=\kappa \ell(-\hat{y},-1)$


## Boolean classifiers

## Least squares classifier

- use empirical risk with square loss

$$
\mathcal{L}(\theta)=\frac{1}{n}\left(\sum_{i: y^{i}=-1}\left(1+\hat{y}^{i}\right)^{2}+\kappa \sum_{i: y^{i}=1}\left(1-\hat{y}^{i}\right)^{2}\right)
$$

and your choice of regularizer

- with sum squares regularizer, this is least squares classifier
- we can minimize $\mathcal{L}(\theta)+\lambda r(\theta)$ using, e.g., QR factorization


## Logistic regression

- use empirical risk with logistic loss

$$
\mathcal{L}(\theta)=\frac{1}{n}\left(\sum_{i: y^{i}=-1} \log \left(1+e^{\hat{y}^{i}}\right)+\kappa \sum_{i: y^{i}=1} \log \left(1+e^{-\hat{y}^{i}}\right)\right)
$$

and your choice of regularizer

- can minimize $\mathcal{L}(\theta)+\lambda r(\theta)$ using prox-gradient method
- we will find an actual minimizer if $r$ is convex


## Support vector machine

(usually abbreviated as SVM)

- use empirical risk with hinge loss

$$
\mathcal{L}(\theta)=\frac{1}{n}\left(\sum_{i: y^{i}=-1}\left(1+\hat{y}^{i}\right)_{+}+\kappa \sum_{i: y^{i}=1}\left(1-\hat{y}^{i}\right)_{+}\right)
$$

and sum squares regularizer

- $\mathcal{L}(\theta)+\lambda r(\theta)$ is convex
- it can be minimized by various methods (but not prox-gradient)


## Support vector machine




- decision boundary is $\theta^{\top} x=0$
- black lines show points where $\theta^{\top} x= \pm 1$
- what is the training risk here?

ROC

## Receiver operating characteristic

(always abbreviated as ROC, comes from WWII)

- explore trade-off of false negative versus false positive rates
- create classifier for many values of $\kappa$
- for each choice of $\kappa$, select hyper-parameter $\lambda$ via validation on test set with Neyman-Pearson risk
- plot the test (and maybe train) false negative and false positive rates against each other
- called receiver operating characteristic (ROC) (when viewed upside down)


## Example



- square loss, sum squares regularizer
- left hand plot shows training errors in blue, test errors in red
- right hand plot shows minimum-error classifier (i.e., $\kappa=1$ )


## Example



- left hand plot shows predictor when $\kappa=0.4$
- right hand plot shows predictor when $\kappa=4$

