EE787 Autumn 2019 Jong-Han Kim

Boolean Classification

Jong-Han Kim

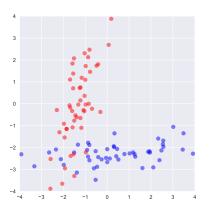
EE787 Machine learning Kyung Hee University

Boolean classification

Boolean classification

- supervised learning is called boolean classification when raw output variable
 v is a categorical that can take two possible values
- ▶ we denote these −1 and 1, and they often correspond to {FALSE, TRUE} or {NEGATIVE, POSITIVE}
- lacktriangle for a data record u^i, v^i , the value $v^i \in \{-1, 1\}$ is called the *class* or *label*
- lacktriangleright a boolean classifier predicts label \hat{v} given raw input u

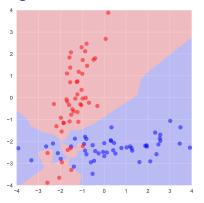
Classification



- ightharpoonup here $u \in \mathbf{R}^2$
- lacktriangleright red points have $v^i=-1$, blue points have $v^i=1$
- $lackbox{ we'd like a predictor that maps any }u\in\mathbf{R}^2$ into prediction $\hat{v}\in\{-1,1\}$

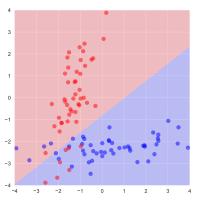
4

Example: Nearest neighbor classsifier



- lacksquare given u, let $k = \operatorname{argmin}_k ||u u^k||$, then predict $\hat{v} = v^k$
- ightharpoonup red region is the set of u for which prediction is -1
- lackbox blue region is the set of u for which prediction is 1
- > zero training error (all points classified correctly), but perhaps overfit

Example: Least squares classifier



- lacktriangleright embed x=(1,u) and y=v, apply least squares regression
- $lackbox{ gives } \hat{y} = heta_1 + heta_2 u_1 + heta_3 u_2$
- $lackbox{predict using } \hat{v} = \operatorname{sign}(\hat{y})$
- ▶ 11% of points misclassified at training

Confusion matrix

The two types of errors

- ightharpoonup measure performance of a specific predictor on a set of n data records
- lacktriangle each data point i has $v^i \in \{-1, 1\}$
- lacktriangle and corresponding prediction $\hat{v}^i=g(v^i)\in\{-1,1\}$
- $lackbox{ }$ only four possible values for the data pair \hat{v}^i , v^i :
 - ightharpoonup true positive if $\hat{v}^i = 1$ and $v^i = 1$
 - ▶ true negative if $\hat{v}^i = -1$ and $v^i = -1$
 - false negative or type II error if $\hat{v}^i = -1$ and $v^i = 1$
 - ▶ false positive or type I error if $\hat{v}^i = 1$ and $v^i = -1$

Confusion matrix

▶ for a predictor and a data set define the *confusion matrix*

$$C = \left[\begin{array}{ccc} \# \text{ true negatives} & \# \text{ false negatives} \\ \# \text{ false positives} & \# \text{ true positives} \end{array} \right] = \left[\begin{array}{ccc} C_{\mathsf{tn}} & C_{\mathsf{fn}} \\ C_{\mathsf{fp}} & C_{\mathsf{tp}} \end{array} \right]$$

(warning: some people use the transpose of C)

- $ightharpoonup C_{\sf tn} + C_{\sf fn} + C_{\sf fp} + C_{\sf tp} = n$ (total number of examples)
- $ightharpoonup N_{n} = C_{tn} + C_{fp}$ is number of negative examples
- $ightharpoonup N_p = C_{fn} + C_{tp}$ is number of positive examples
- diagonal entries give numbers of correct predictions
- off-diagonal entries give numbers of incorrect predictions of the two types

Some boolean classification measures

$$lacktriangleright$$
 confusion matrix $\left[egin{array}{cc} C_{\mathsf{tn}} & C_{\mathsf{fn}} \\ C_{\mathsf{fp}} & C_{\mathsf{tp}} \end{array} \right]$

- ▶ the basic error measures:
 - ▶ false positive rate is C_{fp}/n
 - false negative rate is C_{fn}/n
 - error rate is $(C_{\mathsf{fn}} + C_{\mathsf{fp}})/n$
- error measures some people use:
 - ightharpoonup true positive rate or sensitivity or recall is $C_{\sf tp}/N_{\sf p}$
 - ▶ false alarm rate is C_{fp}/N_n
 - ightharpoonup specificity or true negative rate is $C_{
 m tn}/N_{
 m n}$
 - precision is $C_{\sf tp}/(C_{\sf tp}+C_{\sf fp})$

Neyman-Pearson error

- $lackbox{Neyman-Pearson error}$ over a data set is $\kappa C_{\mathsf{fn}}/n + C_{\mathsf{fp}}/n$
- ▶ a scalarization of our two objectives, false positive and false negative rates
- \triangleright κ is how much more false negatives irritate us than false positives
- when $\kappa = 1$, the Neyman-Pearson error is the *error rate*

we'll use the Neyman-Pearson error as our scalarized measure

ERM

Embedding

- lacktriangle we embed raw input and output records as $x=\phi(u)$ and $y=\psi(v)$
- $ightharpoonup \phi$ is the feature map
- lacksquare ψ is the identity map, $\psi(v)=v$
- un-embed by $\hat{v} = \text{sign}(\hat{y})$
- $lackbox{ equivalent to } \hat{v} = \mathop{
 m argmin}_{v \in \{-1,1\}} |\hat{y} \psi(v)|$
- lacktriangleright i.e., choose the nearest boolean value to the (real) prediction \hat{y}

ERM

 \blacktriangleright given loss function $\ell(\hat{y}, y)$, empirical risk on a data set is

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i)$$

▶ for linear model $\hat{y} = \theta^{\mathsf{T}} x$, with $\theta \in \mathbf{R}^d$,

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(heta^{ extsf{T}} x^i, y^i)$$

- ▶ ERM: choose θ to minimize $\mathcal{L}(\theta)$
- lacktriangledown regularized ERM: choose heta to minimize $\mathcal{L}(heta) + \lambda r(heta)$, with $\lambda > 0$

Loss functions for boolean classification

- \blacktriangleright to apply ERM, we need a loss function on embedded variables $\ell(\hat{y}, y)$
- \triangleright y can only take values -1 or 1
- lackbox but $\hat{y} = \theta^{\mathsf{T}} x \in \mathbf{R}$ can be any real number
- ▶ to specify ℓ , we only need to give two functions (of a scalar \hat{y}):
 - ▶ $\ell(\hat{y}, -1)$ is how much \hat{y} irritates us when y = -1
 - $igr less \ell(\hat{y},1)$ is how much \hat{y} irritates us when y=1
- we can take $\ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1)$, to reflect that false negatives irritate us a factor κ more than false positives

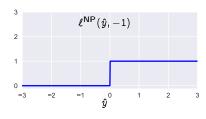
Neyman-Pearson loss

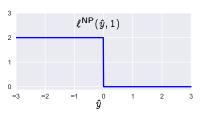
▶ Neyman-Pearson loss is

$$\blacktriangleright \ \ell^{\mathsf{NP}}(\hat{y},-1) = \begin{cases} 1 & \hat{y} \geq 0 \\ 0 & \hat{y} < 0 \end{cases}$$

$$\blacktriangleright \ \ell^{\mathsf{NP}}(\hat{y},1) = \kappa \ell^{\mathsf{NP}}(\hat{y},-1) = \begin{cases} \kappa & \hat{y} < 0 \\ 0 & \hat{y} \geq 0 \end{cases}$$

ightharpoonup empirical Neyman-Pearson risk $\mathcal{L}^{\mathsf{NP}}$ is the Neyman-Pearson error





The problem with Neyman-Pearson loss

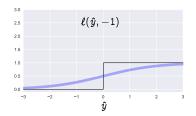
- ▶ empirical Neyman-Pearson risk $\mathcal{L}^{\text{NP}}(\theta)$ is not differentiable, or even continuous (and certainly not convex)
- lacktriangle worse, its gradient $abla \mathcal{L}^{\mathrm{NP}}(heta)$ is either zero or undefined
- so an optimizer does not know how to improve the predictor

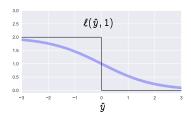
Idea of proxy loss

- we get better results using a proxy loss that
 - ▶ approximates, or at least captures the flavor of, the Neyman-Pearson loss
 - ▶ is more easily optimized (e.g., is convex or has nonzero derivative)

- we want a proxy loss function
 - lacktriangle with $\ell(\hat{y},-1)$ small when $\hat{y}<0$, and larger when $\hat{y}>0$
 - $lackbox{ with } \ell(\hat{y},+1)$ small when $\hat{y}>0$, and larger when $\hat{y}<0$
 - which has other nice characteristics, e.g., differentiable or convex

Sigmoid loss

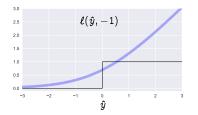


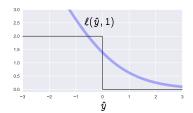


$$\blacktriangleright \ \ell(\hat{y},-1) = \frac{1}{1+e^{-\hat{y}}}, \quad \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1) = \frac{\kappa}{1+e^{\hat{y}}}$$

- ▶ differentiable approximation of Neyman-Pearson loss
- but not convex

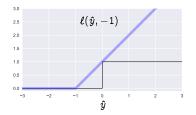
Logistic loss

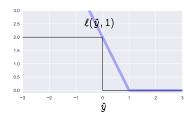




- $\blacktriangleright \ \ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}), \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa \log(1 + e^{-\hat{y}})$
- ▶ differentiable and convex approximation of Neyman-Pearson loss

Hinge loss



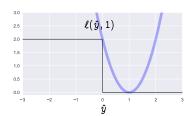


$$ullet \ \ell(\hat{y},-1) = (1+\hat{y})_+, \quad \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1) = \kappa (1-\hat{y})_+$$

▶ nondifferentiable but convex approximation of Neyman-Pearson loss

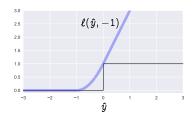
Square loss

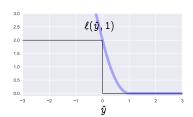




- $ullet \ \ell(\hat{y},-1) = (1+\hat{y})^2, \quad \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1) = \kappa (1-\hat{y})^2$
- ▶ ERM is least squares problem

Hubristic loss





▶ define the *hubristic loss* (huber + logistic) as

$$\ell(\hat{y},-1) = egin{cases} 0 & \hat{y} < -1 \ (\hat{y}+1)^2 & -1 \leq \hat{y} \leq 0 \ 1+2\hat{y} & \hat{y} > 0 \end{cases}$$

 $\qquad \qquad \boldsymbol{\ell}(\hat{y},1) = \kappa \boldsymbol{\ell}(-\hat{y},-1)$

Boolean classifiers

Least squares classifier

use empirical risk with square loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i: y^i = -1} (1 + \hat{y}^i)^2 \ + \ \kappa \sum_{i: y^i = 1} (1 - \hat{y}^i)^2
ight)$$

and your choice of regularizer

- with sum squares regularizer, this is least squares classifier
- lacktriangle we can minimize $\mathcal{L}(heta) + \lambda r(heta)$ using, e.g., QR factorization

Logistic regression

use empirical risk with logistic loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i:y^i = -1} \log(1 + e^{\hat{y}^i}) \ + \ \kappa \sum_{i:y^i = 1} \log(1 + e^{-\hat{y}^i})
ight)$$

and your choice of regularizer

- lacktriangle can minimize $\mathcal{L}(heta) + \lambda r(heta)$ using prox-gradient method
- ightharpoonup we will find an actual minimizer if r is convex

Support vector machine

(usually abbreviated as **SVM**)

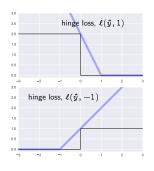
use empirical risk with hinge loss

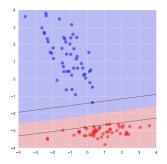
$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i:y^i = -1} (1 + \hat{y}^i)_+ \ + \ \kappa \sum_{i:y^i = 1} (1 - \hat{y}^i)_+
ight)$$

and sum squares regularizer

- $\blacktriangleright \mathcal{L}(\theta) + \lambda r(\theta)$ is convex
- ▶ it can be minimized by various methods (but not prox-gradient)

Support vector machine





- ▶ decision boundary is $\theta^T x = 0$
- lacktriangle black lines show points where $heta^\mathsf{T} x = \pm 1$
- what is the training risk here?

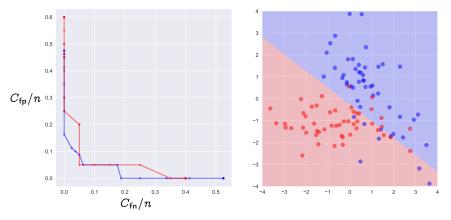
ROC

Receiver operating characteristic

(always abbreviated as ROC, comes from WWII)

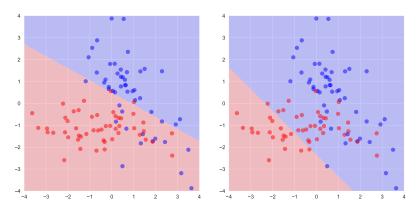
- explore trade-off of false negative versus false positive rates
- lacktriangleright create classifier for many values of κ
- lacktriangle for each choice of κ , select hyper-parameter λ via validation on test set with Neyman-Pearson risk
- plot the test (and maybe train) false negative and false positive rates against each other
- ▶ called *receiver operating characteristic* (ROC) (when viewed upside down)

Example



- square loss, sum squares regularizer
- ▶ left hand plot shows training errors in blue, test errors in red
- lacktriangledown right hand plot shows minimum-error classifier (i.e., $\kappa=1$)

Example



- lacktriangle left hand plot shows predictor when $\kappa=0.4$
- \blacktriangleright right hand plot shows predictor when $\kappa=4$