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Price data

I sale prices of 2930 homes in Ames, Iowa from 2006 to 2010

I data contains 80 features
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Features

fit with 16 features

I area of lot
I year built
I year of last remodel
I area of basement
I area of living space (above ground)
I area of first floor
I area of second floor
I number of bedrooms (above ground)
I number of kitchens (above ground)
I number of fireplaces
I area of garage
I area of wooden deck
I number of half bathrooms
I number of rooms (above ground)
I overall condition (scored 1-10)
I overall quality of materials and finish (scored 1-10)
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Outliers
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I we manually remove 4 outliers with area > 4000

(we’ll see later how to detect outliers)
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Regression
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I split data randomly into 1164 training, 291 test

I target is log(price)

I standardize all features (and log(price))

I training loss 0.1060, test loss 0.1361

I plot shows all test points
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Ridge regression
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I regularization � = 187 is optimal; improves test performance a bit

I � is shrunk by regularization, so model is less sensitive
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Ridge regression
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I least squares test loss is 0.1361, with k�k � 0:55

I ridge regression test loss (with � = 178) is 0.1295 with k�k � 0:46

I ridge regression model is less sensitive
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Repeated train/test
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I mean test loss 0.118
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Some extra features

I 25 different neighborhoods, one-hot embedded

I 5 different building types, one-hot embedded

single-family townhouse two-family-conversion

townhouse duplex

I kitchen quality, one-hot embedded (validated better than real embedding)

excellent, good, typical, fair

I garage capacity, number of cars f0; 1; 2; 3; 4g, embedded as real (validated
better than one-hot embedding)

I repeated test/train gives average test loss 0.101
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Feature engineering
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I additional feature xnew = log(lot area)

I additional feature xnew = log(living area)

I repeated test/train gives average test loss 0.0982
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Feature engineering

I Boolean feature

�a+(u) =

(
1 if u > a

0 otherwise
�a�(u) =

(
1 if u < a

0 otherwise

I add new features

I �1000+(living area) and �600�(living area)

I �6000+(lot area) and �4000�(lot area)

I repeated test/train gives average test loss 0.0973

I corresponds to mean percentage house price error � 8%
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Important features

OverallQual 0.172
YearBuilt 0.146
TotalBsmtSF 0.124
OverallCond 0.1
GrLivArea 0.0994
logliv 0.0887
1stFlrSF 0.0763
YearRemodAdd 0.073
GarageArea 0.0656
Fireplaces 0.0601
GarageCars 0.0595
2ndFlrSF 0.0584
Neighborhood-IDOTRR -0.0569
Neighborhood-OldTown -0.0565

KitchenQual-Ex 0.0543
Neighborhood-Crawfor 0.054
Neighborhood-NridgHt 0.0522
Neighborhood-StoneBr 0.0484
loglot 0.0431
KitchenAbvGr -0.0408
Neighborhood-Somerst 0.0371
Neighborhood-NoRidge 0.0362
Neighborhood-Edwards -0.035
liv- -0.0345
WoodDeckSF 0.0305
HalfBath 0.0293
LotArea 0.0292
lot- -0.0284
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