Features

Jong-Han Kim

EE787 Machine learning Kyung Hee University

Records and embedding

Raw data

- raw data pairs are (u, v), with $u \in \mathcal{U}, v \in \mathcal{V}$
- \mathcal{U} is set of all possible input values
- \mathcal{V} is set of all possible output values
- each u is called a record
- typically a record is a tuple, or list, $u=\left(u_{1}, u_{2}, \ldots, u_{r}\right)$
- each u_{i} is a field or component, which has a type, e.g., real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- e.g., a record for a house for sale might consist of (address, photo, description, house/apartment?, lot size, . . , \# bedrooms)

Feature map

- learning algorithms are applied to (x, y) pairs,

$$
x=\phi(u), \quad y=\psi(v)
$$

- $\phi: \mathcal{U} \rightarrow \mathbf{R}^{d}$ is the feature map for u
- $\psi: \mathcal{V} \rightarrow \mathbf{R}$ is the feature map for v
- feature maps transform records into vectors
- feature maps usually work on each field separately,

$$
\phi\left(u_{1}, \ldots, u_{r}\right)=\left(\phi_{1}\left(u_{1}\right), \ldots, \phi_{r}\left(u_{r}\right)\right)
$$

- ϕ_{i} is an embedding of the type of field i into a vector

Embeddings

- embedding puts the different field types on an equal footing, i.e., vectors
- some embeddings are simple, e.g.,
- for a number field $(\mathcal{U}=\mathbf{R}), \phi_{i}\left(u_{i}\right)=u_{i}$
- for a Boolean field, $\phi_{i}\left(u_{i}\right)=\left\{\begin{aligned} 1 & u_{i}=\text { TRUE } \\ -1 & u_{i}=\text { FALSE }\end{aligned}\right.$
- others are more sophisticated
- text to TFID histogram
- word2vec (maps words into vectors)
- pre-trained ImageNet NN (maps images into vectors)
(more on these later)

More embeddings

- color to (R, G, B)
- geolocation data: $\phi(u)=($ Lat,Long $)$ in R^{2} or embed in R^{3}
- day of week:

Faithful embeddings

a faithful embedding satisfies

- $\phi(u)$ is near $\phi(\tilde{u})$ when u and \tilde{u} are 'similar'
- $\phi(u)$ is not near $\phi(\tilde{u})$ when u and \tilde{u} are 'dissimilar'
- lefthand concept is vector distance
- righthand concept depends on field type, application
- interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies
- we will see later how such embeddings can be constructed

Example: word2vec

Standardized embeddings

usually assume that an embedding is standardized

- entries of $\phi(u)$ are centered around 0
- entries of $\phi(u)$ have RMS value around 1
- roughly speaking, entries of $\phi(u)$ ranges over ± 1
- with standarized embeddings, entries of feature map

$$
\phi\left(u_{1}, \ldots, u_{r}\right)=\left(\phi_{1}\left(u_{1}\right), \ldots, \phi_{r}\left(u_{r}\right)\right)
$$

are all comparable, i.e., centered around zero, standard deviation around one

- $\operatorname{rms}(\phi(u)-\phi(\tilde{u}))$ is reasonable measure of how close records u and \tilde{u} are

Standardization or z-scoring

- suppose $\mathcal{U}=\mathrm{R}$ (field type is real numbers)
- for data set $u^{1}, \ldots, u^{n} \in \mathbf{R}$

$$
\bar{u}=\frac{1}{n} \sum_{i=1}^{n} u^{i} \quad \operatorname{std}(u)=\left(\frac{1}{n} \sum_{i=1}^{n}\left(u^{i}-\bar{u}\right)^{2}\right)^{\frac{1}{2}}
$$

- the z-score or standardization of u is the embedding

$$
x=\operatorname{zscore}(u)=\frac{1}{\operatorname{std}(u)}(u-\bar{u})
$$

- ensures that embedding values are centered at zero, with standard deviation one
- z-scored features are very easy to interpret: $x=\phi(u)=+1.3$ means that u is 1.3 standard deviations above the mean value

Standardized data matrix

- suppose all d (real) features have been standardized
- columns of $n \times d$ feature matrix X have zero mean, RMS value one
- $(1 / n) X^{T} X=\Sigma$ is the feature correlation matrix
- $\Sigma_{i i}=1$ (since each column of X has RMS value 1 , and so norm \sqrt{n})
- $\Sigma_{i j}$ is correlation coefficient of i th and j th raw features

Log transform

- old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as $\phi(u)=\log u($ or $\log (1+u)$) (and then standarize)
- examples: web site visits, ad views, company capitalization
- interpretation as faithful embedding:
- 20 and 22 are similar, as are 1000 and 1100
- but 20 and 120 are not similar
- i.e., you care about fractional or relative differences between raw values (here, log embedding is faithful, affine embedding is not)
- can also apply to output or label field, i.e., $y=\psi(v)=\log v$ if you care about percentage or fractional errors; recover $\hat{v}=\exp (\hat{y})$

Example: House price prediction

- we want to predict house selling price v from record $u=\left(u_{1}, u_{2}\right)$
- $u_{1}=\operatorname{area}$ (sq. ft.)
- $u_{2}=\#$ bedrooms
- we care about relative error in price, so we embed v as $\psi(v)=\log v$ (and then standardize)
- we standardize fields u_{1} and u_{2}

$$
x_{1}=\frac{u_{1}-\mu_{1}}{\sigma_{1}}, \quad x_{2}=\frac{u_{2}-\mu_{2}}{\sigma_{2}}
$$

- $\mu_{1}=\bar{u}_{1}$ is mean area
- $\mu_{2}=\bar{u}_{2}$ is mean number of bedrooms
- $\sigma_{1}=\operatorname{std}\left(u_{1}\right)$ is std. dev. of area
- $\sigma_{2}=\operatorname{std}\left(u_{2}\right)$ is std. dec. of \# bedrooms
(means and std. dev. are over our data set)

Example: House price regression model

- regression model: $\hat{y}=\theta_{1}+\theta_{2} x_{1}+\theta_{3} x_{2}$
- in terms of original raw data:

$$
\hat{v}=\exp \left(\theta_{1}+\theta_{2} \frac{u_{1}-\mu_{1}}{\sigma_{1}}+\theta_{3} \frac{u_{2}-\mu_{2}}{\sigma_{2}}\right)
$$

- exp undoes log embedding of house price

Vector embeddings

Vector embeddings for real field

- we can embed a field u into a vector $x=\phi(u) \in \mathbf{R}^{k}$
- useful even when $\mathcal{U}=\mathbf{R}$ (real field)
- polynomial embedding:

$$
\phi(u)=\left(1, u, u^{2}, \ldots, u^{d}\right)
$$

- piecewise linear embedding:

$$
\phi(u)=\left(1,(u)_{-},(u)_{+}\right)
$$

where $(u)_{-}=\min (u, 0),(u)_{+}=\max (u, 0)$

- regression with these features yield polynomial and piecewise linear predictors

Whitening

- analog of standardization for raw data $\mathcal{U}=\mathbf{R}^{d}$
- start with raw data, $n \times d$ matrix U
- $\bar{u}=U^{T} 1 / n$ is vector of column means
- $\tilde{U}=U-\mathbf{1} \bar{u}^{T}$ is de-meaned data matrix
- $\tilde{U}=Q R$ is its $Q R$ factorization
- $X=\sqrt{n} Q=\sqrt{n} \tilde{U} R^{-1}$ defines embedding $x^{i}=\phi\left(u^{i}\right)$
- columns of X have zero mean and RMS value one
- columns of X are orthogonal
- features are uncorrelated
- feature correlation matrix is $\Sigma=I$

Whitening example

Categorical data

- data field is categorical if it only takes a finite number of values
- i.e., \mathcal{U} is a finite set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$
- examples:
- TRUE/FALSE (two values, also called Boolean)
- APPLE, ORANGE, BANANA (three values)
- MONDAY, ..., SUNDAY (seven values)
- ZIP code (40000 values)
- one-hot embedding for categoricals: $\phi\left(\alpha_{i}\right)=e_{i} \in \mathbf{R}^{k}$

$$
\phi(\operatorname{APPLE})=(1,0,0), \quad \phi(\text { ORANGE })=(0,1,0), \quad \phi(\text { BANANA })=(0,0,1)
$$

Ordinal data

- ordinal data is categorical, with an order
- example: Likert scale, with values

STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- can embed into \mathbf{R} with values $-2,-1,0,1,2$
- or treat as categorical, with one-hot embedding into \mathbf{R}^{5}
- example: number of bedrooms in house
- can be treated as a real number
- or as an ordinal with (say) values $1, \ldots, 6$

Feature engineering

How feature maps are constructed

- start by embedding each field

$$
\phi\left(u_{1}, \ldots, u_{r}\right)=\left(\phi_{1}\left(u_{1}\right), \ldots, \phi_{r}\left(u_{r}\right)\right)
$$

- can then standardize, if needed
- use feature engineering to create new features from existing ones

Creating new features

- product features: $x_{\text {new }}=x_{i} x_{j}$ (models interactions between features)
$-\max$ features: $x_{\text {new }}=\max \left(x_{i}, x_{j}\right)$ (can also use min)
- positive/negative parts:

$$
x_{\text {new }+}=\left(x_{i}\right)_{+}=\max \left(x_{i}, 0\right), \quad x_{\text {new }-}=\left(x_{i}\right)_{-}=\min \left(x_{i}, 0\right)
$$

- random features:
- choose random matrix R
- new features are $(R x)_{+}$or $(R x)_{-}$

Un-embedding

Un-embedding

- we embed v as $y=\psi(v), \psi: \mathcal{V} \rightarrow \mathbf{R}$
- we need to 'invert' this operation, and go from \hat{y} to \hat{v}
- when the inverse function exists, we use $\psi^{-1}: \mathbf{R} \rightarrow \mathcal{V}$
- example: \log embedding $y=\log v$ has inverse $v=\exp y$
- prediction stack:

1. embed: given record u, feature vector is $x=\phi(u)$
2. predict: $\hat{y}=g(x)$
3. un-embed: $\hat{v}=\psi^{-1}(\hat{y})$

- final predictor is $\hat{v}=\psi^{-1}(g(\phi(u)))$

Un-embedding

- in many cases, the inverse of ψ function doesn't exist
- for example, embedding a Boolean or ordinal into \mathbf{R}
- for the purposes of un-embedding, we define

$$
\psi^{-1}(y)=\underset{v \in \mathcal{V}}{\operatorname{argmin}}\|y-\psi(v)\|
$$

i.e., we choose the value of v for which $\psi(v)$ is closest to y

- example: embed TRUE $\mapsto 1$ and FALSE $\mapsto-1$
- un-embed via

$$
\psi^{-1}(y)= \begin{cases}\text { TRUE } & \text { if } y>0 \\ \text { FALSE } & \text { otherwise }\end{cases}
$$

Example: Un-embedding one-hot

- one-hot embedding: $\phi(u)=e_{u}$ for $\mathcal{U}=\{1, \ldots, d\}$
- un-embed

$$
\phi^{-1}(x)=\underset{u}{\operatorname{argmin}}\left\|x-e_{u}\right\|_{2}=\underset{u}{\operatorname{argmax}} x_{u}
$$

