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Records and embedding



Raw data

» raw data pairs are (u,v), withu €U, v €V

» U is set of all possible input values

» V is set of all possible output values

» each u is called a record

» typically a record is a tuple, or list, v = (u1, uz,...,ur)

» each u; is a field or component, which has a type, e.g., real number, Boolean,
categorical, ordinal, word, text, audio, image, parse tree (more on this later)

» e.g., a record for a house for sale might consist of

(address, photo, description, house/apartment?, lot size, . .., # bedrooms)



Feature map

v

learning algorithms are applied to (z,y) pairs,
z=¢(u), y=19()

> ¢:U — R% is the feature map for u

» ¢ :V — Ris the feature map for v

» feature maps transform records into vectors

» feature maps usually work on each field separately,

P,y ur) = ($2(wa), -, $r(ur))

» ¢i is an embedding of the type of field 7 into a vector



Embeddings

» embedding puts the different field types on an equal footing, i.e., vectors

» some embeddings are simple, e.g.,
» for a number field (U = R), ¢;(u;) = u;

1 u; = TRUE

» for a Boolean field, ¢;(u;) = { 1w — FALSE
_ ;=

» others are more sophisticated

p» text to TFID histogram
» word2vec (maps words into vectors)

» pre-trained ImageNet NN (maps images into vectors)

(more on these later)



More embeddings

» color to (R, G, B)
» geolocation data: ¢(u) =(Lat,Long) in R? or embed in R®

» day of week:
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Faithful embeddings

a faithful embedding satisfies

» o(u) is near ¢(i) when u and @ are ‘similar’

» ¢(u) is not near (&) when u and @ are ‘dissimilar’

» lefthand concept is vector distance

» righthand concept depends on field type, application

» interesting examples: names, professions, companies, countries, languages,
ZIP codes, cities, songs, movies

» we will see later how such embeddings can be constructed



tenderness
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Standardized embeddings

usually assume that an embedding is standardized
» entries of ¢(u) are centered around O

» entries of ¢(u) have RMS value around 1

» roughly speaking, entries of ¢(u) ranges over +1

» with standarized embeddings, entries of feature map
¢(’U,1, R ] u”‘) = (¢1(’LL1), R} ¢”‘(u"'))
are all comparable, i.e., centered around zero, standard deviation around one

» rms(¢(u) — ¢(@)) is reasonable measure of how close records w and @ are



Standardization or z-scoring

» suppose U = R (field type is real numbers)

» for data set u!,...,u" € R
ﬁ—l u' std(u Z(u a)
T n

» the z-score or standardization of u is the embedding

1
2

z = zscore(u) =

1 _
std(a) 4 Y

» ensures that embedding values are centered at zero, with standard deviation
one

» z-scored features are very easy to interpret: z = ¢(u) = +1.3 means that u
is 1.3 standard deviations above the mean value
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Standardized data matrix

» suppose all d (real) features have been standardized

» columns of n x d feature matrix X have zero mean, RMS value one
» (1/n)XTX =X is the feature correlation matrix

» i = 1 (since each column of X has RMS value 1, and so norm /n)

» Xi; is correlation coefficient of ith and jth raw features
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Log transform

» old school rule-of-thumb: if field w is positive and ranges over wide scale,
embed as ¢(u) = logu (or log(1 + u)) (and then standarize)

» examples: web site visits, ad views, company capitalization

» interpretation as faithful embedding:

» 20 and 22 are similar, as are 1000 and 1100
» but 20 and 120 are not similar

» i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

» can also apply to output or label field, ie., y = ¥(v) = logwv if you care
about percentage or fractional errors; recover ¥ = exp(g)
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Example: House price prediction

» we want to predict house selling price v from record u = (u1, u2)

» u1 = area (sq. ft.)
» uz = # bedrooms

» we care about relative error in price, so we embed v as ¥(v) = logv
(and then standardize)

» we standardize fields u; and u»

g="H g, Y2 TR
g1 g2

» u1 = 41 is mean area

» u2 = Uz is mean number of bedrooms

» o1 = std(u1) is std. dev. of area

» o2 = std(u2) is std. dec. of # bedrooms

(means and std. dev. are over our data set)



Example: House price regression model

» regression model: § = 01 + B2z1 + O3z2

» in terms of original raw data:

o = exp ((91 +92u10_“1 +93“2;“2
1 2

» exp undoes log embedding of house price

)
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Vector embeddings
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Vector embeddings for real field

> we can embed a field u into a vector z = $(u) € R*
» useful even when U = R (real field)
» polynomial embedding:
d(u) = (1,u,%%, ..., u%)
» piecewise linear embedding:
$(u) = (1, (uv)-, (v)+)
where (u)_ = min(«,0), (u)+ = max(u, 0)

» regression with these features yield polynomial and piecewise linear predictors
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Whitening

v

analog of standardization for raw data U = R*
start with raw data, n x d matrix U

@ =UT1/n is vector of column means

U = U — 147 is de-meaned data matrix
U = QR is its QR factorization

X = /nQ = /nUR™! defines embedding z* = ¢(u*)
» columns of X have zero mean and RMS value one
» columns of X are orthogonal
» features are uncorrelated

p feature correlation matrix is & = I
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Whitening example
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Categorical data

» data field is categorical if it only takes a finite number of values
» ie, U is a finite set {ai,...,ar}

» examples:

» TRUE/FALSE (two values, also called Boolean)
» APPLE, ORANGE, BANANA (three values)
» MONDAY, ..., SUNDAY (seven values)

» ZIP code (40000 values)
b one-hot embedding for categoricals: ¢(a;) = e; € R*

¢(aPPLE) = (1,0,0), ¢(oraNGE) = (0,1,0), ¢(BANANA) = (0,0,1)
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Ordinal data

» ordinal data is categorical, with an order
» example: Likert scale, with values

STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE
» can embed into R with values —2,—1,0,1,2

b or treat as categorical, with one-hot embedding into R®

» example: number of bedrooms in house

p» can be treated as a real number

» or as an ordinal with (say) values 1,...,6
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Feature engineering
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How feature maps are constructed

» start by embedding each field
(v, ur) = (f2(u), ..., ¢r(ur))
» can then standardize, if needed

» use feature engineering to create new features from existing ones
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Creating new features

» product features: znew = ziz; (models interactions between features)
> max features: Znew = max(z;, ;) (can also use min)
» positive/negative parts:

Znewt+ = (zi)4+ = max(z;,0), Znew— = (zi)— = min(z;,0)

» random features:

» choose random matrix R

» new features are (Rz)4 or (Rz)_
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Un-embedding
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Un-embedding

» we embed vasy =v¢(v), ¥:V =R

» we need to ‘invert’ this operation, and go from § to 9

» when the inverse function exists, we use ¢y ! : R — V

» example: log embedding y = logv has inverse v = expy
» prediction stack:

1. embed: given record u, feature vector is z = ¢(u)
2. predict: § = g(z)
3. un-embed: 1 = ¢ (%)

» final predictor is 7 = ¥~ (g(¢(u)))
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Un-embedding

» in many cases, the inverse of 9 function doesn’t exist
» for example, embedding a Boolean or ordinal into R
» for the purposes of un-embedding, we define

¥ *(y) = argmin||y — 9 (v)||
vEV

i.e., we choose the value of v for which 9 (v) is closest to y
» example: embed TRUE — 1 and FALSE — —1

» un-embed via
_ TRUE ify>0
¥ Hy) =

FALSE otherwise
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Example: Un-embedding one-hot

» one-hot embedding: ¢(u) = ey for U ={1,...,d}

» un-embed
¢~ " (z) = argmin||z — ey||; = argmax z,,
u u
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