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Records and embedding
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Raw data

I raw data pairs are (u; v), with u 2 U , v 2 V

I U is set of all possible input values

I V is set of all possible output values

I each u is called a record

I typically a record is a tuple, or list, u = (u1; u2; : : : ; ur)

I each ui is a field or component, which has a type, e.g., real number, Boolean,
categorical, ordinal, word, text, audio, image, parse tree (more on this later)

I e.g., a record for a house for sale might consist of

(address; photo; description; house/apartment?; lot size; : : : ;# bedrooms)
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Feature map

I learning algorithms are applied to (x; y) pairs,

x = �(u); y =  (v)

I � : U ! Rd is the feature map for u

I  : V ! R is the feature map for v

I feature maps transform records into vectors

I feature maps usually work on each field separately,

�(u1; : : : ; ur) = (�1(u1); : : : ; �r(ur))

I �i is an embedding of the type of field i into a vector
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Embeddings

I embedding puts the different field types on an equal footing, i.e., vectors

I some embeddings are simple, e.g.,

I for a number field (U = R), �i(ui) = ui

I for a Boolean field, �i(ui) =

�
1 ui = true

�1 ui = false

I others are more sophisticated

I text to TFID histogram

I word2vec (maps words into vectors)

I pre-trained ImageNet NN (maps images into vectors)

(more on these later)
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More embeddings

I color to (R;G;B)

I geolocation data: �(u) =(Lat,Long) in R2 or embed in R3

I day of week:
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Faithful embeddings

a faithful embedding satisfies

I �(u) is near �(~u) when u and ~u are ‘similar’

I �(u) is not near �(~u) when u and ~u are ‘dissimilar’

I lefthand concept is vector distance

I righthand concept depends on field type, application

I interesting examples: names, professions, companies, countries, languages,
ZIP codes, cities, songs, movies

I we will see later how such embeddings can be constructed
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Standardized embeddings

usually assume that an embedding is standardized

I entries of �(u) are centered around 0

I entries of �(u) have RMS value around 1

I roughly speaking, entries of �(u) ranges over �1

I with standarized embeddings, entries of feature map

�(u1; : : : ; ur) = (�1(u1); : : : ; �r(ur))

are all comparable, i.e., centered around zero, standard deviation around one

I rms(�(u)� �(~u)) is reasonable measure of how close records u and ~u are
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Standardization or z-scoring

I suppose U = R (field type is real numbers)

I for data set u1; : : : ; un 2 R

�u =
1

n

nX
i=1

ui std(u) =

�
1

n

nX
i=1

(ui � �u)2
� 1

2

I the z-score or standardization of u is the embedding

x = zscore(u) =
1

std(u)
(u� �u)

I ensures that embedding values are centered at zero, with standard deviation
one

I z-scored features are very easy to interpret: x = �(u) = +1:3 means that u
is 1.3 standard deviations above the mean value
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Standardized data matrix

I suppose all d (real) features have been standardized

I columns of n� d feature matrix X have zero mean, RMS value one

I (1=n)XTX = � is the feature correlation matrix

I �ii = 1 (since each column of X has RMS value 1, and so norm
p
n)

I �ij is correlation coefficient of ith and jth raw features
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Log transform

I old school rule-of-thumb: if field u is positive and ranges over wide scale,
embed as �(u) = logu (or log(1 + u)) (and then standarize)

I examples: web site visits, ad views, company capitalization

I interpretation as faithful embedding:

I 20 and 22 are similar, as are 1000 and 1100

I but 20 and 120 are not similar

I i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

I can also apply to output or label field, i.e., y =  (v) = log v if you care
about percentage or fractional errors; recover v̂ = exp(ŷ)
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Example: House price prediction

I we want to predict house selling price v from record u = (u1; u2)

I u1 = area (sq. ft.)

I u2 = # bedrooms

I we care about relative error in price, so we embed v as  (v) = log v

(and then standardize)

I we standardize fields u1 and u2

x1 =
u1 � �1
�1

; x2 =
u2 � �2
�2

I �1 = �u1 is mean area

I �2 = �u2 is mean number of bedrooms

I �1 = std(u1) is std. dev. of area

I �2 = std(u2) is std. dec. of # bedrooms

(means and std. dev. are over our data set)
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Example: House price regression model

I regression model: ŷ = �1 + �2x1 + �3x2

I in terms of original raw data:

v̂ = exp
�
�1 + �2

u1 � �1
�1

+ �3
u2 � �2
�2

�

I exp undoes log embedding of house price
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Vector embeddings
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Vector embeddings for real field

I we can embed a field u into a vector x = �(u) 2 Rk

I useful even when U = R (real field)

I polynomial embedding:

�(u) = (1; u; u2; : : : ; ud)

I piecewise linear embedding:

�(u) = (1; (u)�; (u)+)

where (u)� = min(u; 0), (u)+ = max(u; 0)

I regression with these features yield polynomial and piecewise linear predictors
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Whitening

I analog of standardization for raw data U = Rd

I start with raw data, n� d matrix U

I �u = UT1=n is vector of column means

I ~U = U � 1�uT is de-meaned data matrix

I ~U = QR is its QR factorization

I X =
p
nQ =

p
n ~UR�1 defines embedding xi = �(ui)

I columns of X have zero mean and RMS value one

I columns of X are orthogonal

I features are uncorrelated

I feature correlation matrix is � = I
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Whitening example
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Categorical data

I data field is categorical if it only takes a finite number of values

I i.e., U is a finite set f�1; : : : ; �kg
I examples:

I true/false (two values, also called Boolean)

I apple, orange, banana (three values)

I monday, . . . , sunday (seven values)

I ZIP code (40000 values)

I one-hot embedding for categoricals: �(�i) = ei 2 Rk

�(apple) = (1; 0; 0); �(orange) = (0; 1; 0); �(banana) = (0; 0; 1)
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Ordinal data

I ordinal data is categorical, with an order

I example: Likert scale, with values

strongly disagree, disagree, neutral, agree, strongly agree

I can embed into R with values �2;�1; 0; 1; 2

I or treat as categorical, with one-hot embedding into R5

I example: number of bedrooms in house

I can be treated as a real number

I or as an ordinal with (say) values 1; : : : ; 6
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Feature engineering
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How feature maps are constructed

I start by embedding each field

�(u1; : : : ; ur) = (�1(u1); : : : ; �r(ur))

I can then standardize, if needed

I use feature engineering to create new features from existing ones
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Creating new features

I product features: xnew = xixj (models interactions between features)

I max features: xnew = max(xi; xj) (can also use min)

I positive/negative parts:

xnew+ = (xi)+ = max(xi; 0); xnew� = (xi)� = min(xi; 0)

I random features:

I choose random matrix R

I new features are (Rx)+ or (Rx)�
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Un-embedding
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Un-embedding

I we embed v as y =  (v),  : V ! R

I we need to ‘invert’ this operation, and go from ŷ to v̂

I when the inverse function exists, we use  �1 : R ! V

I example: log embedding y = log v has inverse v = exp y

I prediction stack:

1. embed: given record u, feature vector is x = �(u)

2. predict: ŷ = g(x)

3. un-embed: v̂ =  �1(ŷ)

I final predictor is v̂ =  �1(g(�(u)))
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Un-embedding

I in many cases, the inverse of  function doesn’t exist

I for example, embedding a Boolean or ordinal into R

I for the purposes of un-embedding, we define

 �1(y) = argmin
v2V

ky �  (v)k

i.e., we choose the value of v for which  (v) is closest to y

I example: embed true 7! 1 and false 7! �1

I un-embed via

 �1(y) =

(
true if y > 0

false otherwise
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Example: Un-embedding one-hot

I one-hot embedding: �(u) = eu for U = f1; : : : ; dg

I un-embed
��1(x) = argmin

u

kx� euk2 = argmax
u

xu
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