
EE787 Autumn 2019 Jong-Han Kim

Features

Jong-Han Kim

EE787 Machine learning
Kyung Hee University

1

Records and embedding

2

Raw data

I raw data pairs are (u; v), with u 2 U , v 2 V

I U is set of all possible input values

I V is set of all possible output values

I each u is called a record

I typically a record is a tuple, or list, u = (u1; u2; : : : ; ur)

I each ui is a field or component, which has a type, e.g., real number, Boolean,
categorical, ordinal, word, text, audio, image, parse tree (more on this later)

I e.g., a record for a house for sale might consist of

(address; photo; description; house/apartment?; lot size; : : : ;# bedrooms)

3

Feature map

I learning algorithms are applied to (x; y) pairs,

x = �(u); y = (v)

I � : U ! Rd is the feature map for u

I : V ! R is the feature map for v

I feature maps transform records into vectors

I feature maps usually work on each field separately,

�(u1; : : : ; ur) = (�1(u1); : : : ; �r(ur))

I �i is an embedding of the type of field i into a vector

4

Embeddings

I embedding puts the different field types on an equal footing, i.e., vectors

I some embeddings are simple, e.g.,

I for a number field (U = R), �i(ui) = ui

I for a Boolean field, �i(ui) =

�
1 ui = true

�1 ui = false

I others are more sophisticated

I text to TFID histogram

I word2vec (maps words into vectors)

I pre-trained ImageNet NN (maps images into vectors)

(more on these later)

5

More embeddings

I color to (R;G;B)

I geolocation data: �(u) =(Lat,Long) in R2 or embed in R3

I day of week:

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Monday

Tuesday
Wednesday

Thursday

Friday

Saturday
Sunday

6

Faithful embeddings

a faithful embedding satisfies

I �(u) is near �(~u) when u and ~u are ‘similar’

I �(u) is not near �(~u) when u and ~u are ‘dissimilar’

I lefthand concept is vector distance

I righthand concept depends on field type, application

I interesting examples: names, professions, companies, countries, languages,
ZIP codes, cities, songs, movies

I we will see later how such embeddings can be constructed

7

2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25

1.0

0.5

0.0

0.5

1.0

tenderness

helpless

defeated

sympathy

outraged

content

adoration

dreading

rejected

hostile

proud

distrusting

disillusioned

bitter

satisfied
receptive

suspicious

interested

cautious

confused

scornful

amused

disturbed

elated

shocked

overwhelmed

helpless

vengeful

enthusiastic

exhilarated

uncomfortable

isolated

disliked

optimistic

dismayed

guilty
numb

amazed

regretful

confused

lonely

ambivalent

alienated

calm

stunned

melancholy

exhausted

bitter

relaxed

interested

depressed
insulted

relieved

hopeless

disgusted

indifferent

hopeful

absorbed

curious

guilty

revulsion

anticipating

brave

eager

lonely

comfortable

hesitant

regretful
safefearful

depressed

preoccupied

happy

anxious

hopeless

angry love

worried

sorrow

jealous

lust

scared
uncertain

aroused

anguished

annoyed

tender

rejected

disappointed

compassionate

horrified

irritated

caring

alarmed

shocked

embarrassed concernpanicked

grumpy

trust
awkward

liking

uncomfortable
exasperated

attraction

disoriented

frustrated

Example: word2vec

8

Standardized embeddings

usually assume that an embedding is standardized

I entries of �(u) are centered around 0

I entries of �(u) have RMS value around 1

I roughly speaking, entries of �(u) ranges over �1

I with standarized embeddings, entries of feature map

�(u1; : : : ; ur) = (�1(u1); : : : ; �r(ur))

are all comparable, i.e., centered around zero, standard deviation around one

I rms(�(u)� �(~u)) is reasonable measure of how close records u and ~u are

9

Standardization or z-scoring

I suppose U = R (field type is real numbers)

I for data set u1; : : : ; un 2 R

�u =
1

n

nX
i=1

ui std(u) =

�
1

n

nX
i=1

(ui � �u)2
� 1

2

I the z-score or standardization of u is the embedding

x = zscore(u) =
1

std(u)
(u� �u)

I ensures that embedding values are centered at zero, with standard deviation
one

I z-scored features are very easy to interpret: x = �(u) = +1:3 means that u
is 1.3 standard deviations above the mean value

10

Standardized data matrix

I suppose all d (real) features have been standardized

I columns of n� d feature matrix X have zero mean, RMS value one

I (1=n)XTX = � is the feature correlation matrix

I �ii = 1 (since each column of X has RMS value 1, and so norm
p
n)

I �ij is correlation coefficient of ith and jth raw features

11

Log transform

I old school rule-of-thumb: if field u is positive and ranges over wide scale,
embed as �(u) = logu (or log(1 + u)) (and then standarize)

I examples: web site visits, ad views, company capitalization

I interpretation as faithful embedding:

I 20 and 22 are similar, as are 1000 and 1100

I but 20 and 120 are not similar

I i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

I can also apply to output or label field, i.e., y = (v) = log v if you care
about percentage or fractional errors; recover v̂ = exp(ŷ)

12

Example: House price prediction

I we want to predict house selling price v from record u = (u1; u2)

I u1 = area (sq. ft.)

I u2 = # bedrooms

I we care about relative error in price, so we embed v as (v) = log v

(and then standardize)

I we standardize fields u1 and u2

x1 =
u1 � �1
�1

; x2 =
u2 � �2
�2

I �1 = �u1 is mean area

I �2 = �u2 is mean number of bedrooms

I �1 = std(u1) is std. dev. of area

I �2 = std(u2) is std. dec. of # bedrooms

(means and std. dev. are over our data set)

13

Example: House price regression model

I regression model: ŷ = �1 + �2x1 + �3x2

I in terms of original raw data:

v̂ = exp
�
�1 + �2

u1 � �1
�1

+ �3
u2 � �2
�2

�

I exp undoes log embedding of house price

14

Vector embeddings

15

Vector embeddings for real field

I we can embed a field u into a vector x = �(u) 2 Rk

I useful even when U = R (real field)

I polynomial embedding:

�(u) = (1; u; u2; : : : ; ud)

I piecewise linear embedding:

�(u) = (1; (u)�; (u)+)

where (u)� = min(u; 0), (u)+ = max(u; 0)

I regression with these features yield polynomial and piecewise linear predictors

16

Whitening

I analog of standardization for raw data U = Rd

I start with raw data, n� d matrix U

I �u = UT1=n is vector of column means

I ~U = U � 1�uT is de-meaned data matrix

I ~U = QR is its QR factorization

I X =
p
nQ =

p
n ~UR�1 defines embedding xi = �(ui)

I columns of X have zero mean and RMS value one

I columns of X are orthogonal

I features are uncorrelated

I feature correlation matrix is � = I

17

Whitening example

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
u1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
u 2

raw
de-meaned
standardized
whitened

18

Categorical data

I data field is categorical if it only takes a finite number of values

I i.e., U is a finite set f�1; : : : ; �kg
I examples:

I true/false (two values, also called Boolean)

I apple, orange, banana (three values)

I monday, . . . , sunday (seven values)

I ZIP code (40000 values)

I one-hot embedding for categoricals: �(�i) = ei 2 Rk

�(apple) = (1; 0; 0); �(orange) = (0; 1; 0); �(banana) = (0; 0; 1)

19

Ordinal data

I ordinal data is categorical, with an order

I example: Likert scale, with values

strongly disagree, disagree, neutral, agree, strongly agree

I can embed into R with values �2;�1; 0; 1; 2

I or treat as categorical, with one-hot embedding into R5

I example: number of bedrooms in house

I can be treated as a real number

I or as an ordinal with (say) values 1; : : : ; 6

20

Feature engineering

21

How feature maps are constructed

I start by embedding each field

�(u1; : : : ; ur) = (�1(u1); : : : ; �r(ur))

I can then standardize, if needed

I use feature engineering to create new features from existing ones

22

Creating new features

I product features: xnew = xixj (models interactions between features)

I max features: xnew = max(xi; xj) (can also use min)

I positive/negative parts:

xnew+ = (xi)+ = max(xi; 0); xnew� = (xi)� = min(xi; 0)

I random features:

I choose random matrix R

I new features are (Rx)+ or (Rx)�

23

Un-embedding

24

Un-embedding

I we embed v as y = (v), : V ! R

I we need to ‘invert’ this operation, and go from ŷ to v̂

I when the inverse function exists, we use �1 : R ! V

I example: log embedding y = log v has inverse v = exp y

I prediction stack:

1. embed: given record u, feature vector is x = �(u)

2. predict: ŷ = g(x)

3. un-embed: v̂ = �1(ŷ)

I final predictor is v̂ = �1(g(�(u)))

25

Un-embedding

I in many cases, the inverse of function doesn’t exist

I for example, embedding a Boolean or ordinal into R

I for the purposes of un-embedding, we define

 �1(y) = argmin
v2V

ky � (v)k

i.e., we choose the value of v for which (v) is closest to y

I example: embed true 7! 1 and false 7! �1

I un-embed via

 �1(y) =

(
true if y > 0

false otherwise

26

Example: Un-embedding one-hot

I one-hot embedding: �(u) = eu for U = f1; : : : ; dg

I un-embed
��1(x) = argmin

u

kx� euk2 = argmax
u

xu

27

