
EE787, Autumn 2019 Jong-Han Kim

Homework 1

1. Moore’s law. The figure and table below show the number of transistors N in 13
microprocessors, and the year of their introduction.

Year # of transistors

1971 2,250
1972 2,500
1974 5,000
1978 29,000
1982 120,000
1985 275,000
1989 1,180,000
1993 3,100,000
1997 7,500,000
1999 24,000,000
2000 42,000,000
2002 220,000,000
2003 410,000,000 1970 1975 1980 1985 1990 1995 2000
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The plot gives the number of transistors on a logarithmic scale. Find the least squares
straight-line fit of the data using the model

log10N ≈ θ1 + θ2(t− 1970)

where t is the year and N is the number of transistors. Note that θ1 is the model’s
prediction of the log of the number of transistors in 1970, and 10θ2 gives the model’s
prediction of the fractional increase in number of transistors per year.

(a) Find the coefficients θ1 and θ2 that minimize the RMS error on the data, and give
the RMS error on the data. Plot the model you find along with the data points.

(b) Use your model to predict the number of transistors in a microprocessor intro-
duced in 2015. Compare the prediction to the IBM Z13 microprocessor, released
in 2015, which has around 4× 109 transistors.

(c) Compare your result with Moore’s law, which states that the number of transistors
per integrated circuit roughly doubles every one and a half to two years.

The computer scientist and Intel corporation co-founder Gordon Moore formulated the
law that bears his name in a magazine article published in 1965.
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2. Nonlinear auto-regressive model. We have a scalar time series z1, z2, . . . , zT . The fol-
lowing one step ahead prediction model is proposed:

ẑt+1 = θ1zt + θ2zt−1 + θ3ztzt−1

where θ = (θ1, θ2, θ3) is the model parameter vector. The sum of the squares of the
prediction error of this model on the given time series is

T−1∑
t=2

(ẑt+1 − zt+1)
2

Note that we must start this sum with t = 2, since z0 and z−1 are not defined. Express
this quantity as ‖Aθ − b‖22, where A is a (T − 2)× 3 matrix and b is a (T − 2)-vector.
(You must say what the entries of A and b are. They can involve the known data
z1, . . . , zT .)

3. Minimizing a squared norm plus an affine function. Minimizing a squared norm plus
an affine function. A generalization of the least squares problem adds an affine function
to the least squares objective,

minimize ‖Ax− b‖2 + cTx+ d

where the n-vector x is the variable to be chosen, and the (given) data are the m× n
matrix A, the m-vector b, the n-vector c, and the number d. We will use the same
assumption we use in least squares: The columns of A are linearly independent. This
generalized problem can be solved by reducing it to a standard least squares problem,
using a trick called completing the square. Show that the objective of the problem
above can be expressed in the form

‖Ax− b‖2 + cTx+ d = ‖Ax− b+ f‖2 + g

for some m-vector f and some constant g. It follows that we can solve the generalized
least squares problem by minimizing ‖Ax− (b−f)‖, an ordinary least squares problem
with solution x̂ = A†(b− f).

Hints. Express the norm squared term on the right-hand side as ‖(Ax− b) + f‖2 and
expand it. Then argue that the equality above holds provided 2ATf = c. One possible
choice is f = (1/2)(A†)T c. (You must justify these statements.)

4. Sequential outlier removal. Throughout this problem, you’ll use the data U, v, found in
fitting_outliers.json. Here, U ∈ Rn×1, so there is only one (nonconstant) feature.
This one feature is already (nearly) standardized, so you do not need to standardize
it. The data matrix X will have two columns, the constant feature one and the feature
given in U . Also, there is enough data that you do not need to use any regularization.
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(a) Fit a least squares model to the dataset above and plot the data points and
straight-line fit. Describe what you observe.

(b) Sequential outlier removal. Find the data point with the largest loss and label
it as an outlier. Remove this point from your data set and fit the model again
to this new dataset (which has one fewer data point). Continue doing this until
your θ stops changing too much (say, the change between the components of the
previous θ and the current one is no more than .01).

Show a few of the intermediate fits and the final fit plotted against the data points.
Describe what you observe.
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