
EE787, Autumn 2019 Jong-Han Kim

Homework 2

1. House price example. This is an extension from the house price example that we have
covered in class. Download house price example.ipynb and house price data.csv

from the course webpage. Running the first cell, on which your kind instructor spent
an hour for you, will download and pre-process the data so that it generates the data
matrix U ∈ R

1456×57 and v ∈ R
1456 in U and v. For descriptions on each feature, see

the corresponding lecture slide (house price example.pdf) from the course webpage.

It further divides the data in 70-30 split, so the 70% train sets are contained in U train

and v train, and the 30% test sets in U test and v test.

(a) Standardize the train set and solve for a series of Tykhonov regularized regression
problems, sweeping your regularization parameter λ over the range [10−1, 103] and
plot the resulting training and test errors.

(b) Choose an appropriate value for λ, i.e., the largest value that achieves approxi-
mately minimum test error. Show your optimized model parameter θ∗ and report
the corresponding test error.

(c) Download the description file data description.txt which contains brief expla-
nations on each field of the raw data. Choose whatever columns you can find
from the data file, and use whatever feature engineering techniques you can do to
improve your model and to repeat (b).

(d) Report the test error that your best model achieves. Your homework will be
evaluated by this number.

2. Tomography. In this problem we explore a simple version of a tomography problem.
We consider a square region, which we divide into an n × n array of square pixels, as
shown below.
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The pixels are indexed column first, by a single index i ranging from 1 to n2, as shown
above. We are interested in some physical property such as density (say) which varies
over the region. To simplify things, we’ll assume that the density is constant inside
each pixel, and we denote by xi the density in pixel i, i = 1, . . . , n2. Thus, x ∈ R

n2

is
a vector that describes the density across the rectangular array of pixels. The problem
is to estimate the vector of densities x, from a set of sensor measurements that we now
describe. Each sensor measurement is a line integral of the density over a line L. In
addition, each measurement is corrupted by a (small) noise term. In other words, the
sensor measurement for line L is given by

n2

∑

i=1

lixi + v,

where li is the length of the intersection of line L with pixel i (or zero if they don’t
intersect), and v is a (small) measurement noise. This is illustrated below for a problem
with n = 3. In this example, we have l1 = l6 = l8 = l9 = 0, and your sensor
measurement will be something like

yL = l2x2 + l3x3 + l4x4 + l5x5 + l7x7 + vL
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Now suppose we have N line integral measurements, associated with lines L1, . . . , LN .
From these measurements, we want to estimate the vector of densities x. The lines are
characterized by the intersection lengths

lij, i = 1, . . . , n2, j = 1, . . . , N,

where lij gives the length of the intersection of line Lj with pixel i. Then, the whole
set of measurements forms a vector y ∈ R

N whose elements are given by

yj =
n2

∑

i=1

lijxi + vj, j = 1, . . . , N.
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And now the problem: you will reconstruct the pixel densities x from the line inte-
gral measurements y. The class webpage contains tomodata_fullysampled.json and
tomodata_undersampled.json, each of which contains the following variables:

• N, the number of measurements (N),

• n_pixels, the side length in pixels of the square region (n),

• y, a vector with the line integrals yj, j = 1, . . . , N ,

• lines_d, a vector containing the displacement dj , j = 1, . . . , N , (distance from
the center of the region in pixels lengths) of each line, and

• lines_theta, a vector containing the angles θj , j = 1, . . . , N , of each line.

We also provide the function line_pixel_length.jl on the webpage, which you do
need to use in order to solve the problem. This function computes the pixel inter-
section lengths for a given line. That is, given dj and θj (and the side length n),
line_pixel_length.jl returns a n × n matrix, whose i, jth element corresponds to
the intersection length for pixel i, j on the image. Use this information to find x, and
display it as an image (of n by n pixels). You’ll know you have it right when the image
of x forms a familiar acronym...

You can also download tomography.ipynb if you want. This will load the json file
and required variables for you.

(a) Use tomodata_fullysampled.json to reconstruct the pixel densities. Note that
the file contains the measurement data obtained from 5184 line integrals on a
60 × 60 image, therefore providing more measurement data than the unknown
variables. So you can simply do this job by setting up a problem like

minimize
x

‖Ax− y‖22

where your feature matrix A can be constructed by using line_pixel_length.jl.

(b) Use tomodata_undersampled.json to reconstruct the pixel densities. Note that
the file contains the measurement data obtained from 1296 line integrals on a
60× 60 image, therefore providing way less measurement data than the unknown
variables. This implies your A is not full column rank and not even tall, so the
least squares solution is not uniquely determined. Try the least squares solution
for this data, possibly by using the backslash operator in Julia.

(c) In order to handle the undersampled case, try the following regularizer defined by
the 2-normed total variation (TV) function. The TV function on an m×n image
X with its column-first vectorized realization x = vec(X) is defined as:

TV2(X) =

m−1
∑

i=1

n−1
∑

j=1

(

|Xij −Xi+1,j |
2 + |Xij −Xi,j+1|

2
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with Dx ∈ R
m(n−1)×mn
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returning the m(n− 1)×mn column-wise differences and Dy ∈ R
(m−1)n×mn
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returning the (m − 1)n × mn row-wise differences. So the TV function returns
the square sum of the horizontal and vertical differences between adjacent pixels.

In other words, you will have to set up and solve the following regularized regres-
sion problems.

minimize
x

‖Ax− y‖22 + λ
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Sweep your regularization parameter λ for λ = 10−6, 10−4, 10−2, 100, 102, 104 and
compare the reconstructed images, X .

You are welcome to use Dx and Dy provided in tomography.ipynb, for which you
will probably be grateful to your instructor and think he is a very nice person,
really.

(d) You may also try the same regularized problem on the fully sampled data.

Note: While irrelevant to your solution, this is actually a simple version of tomography,
best known for its application in medical imaging as the CAT scan. If an x-ray gets
attenuated at rate xi in pixel i (a little piece of a cross-section of your body), the j-th
measurement is

zj =
n2

∏

i=1

e−xilij ,

with the lij as before. Now define yj = − log zj, and we get

yj =
n2

∑

i=1

xilij .
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