Multi-Class Classification

Jong-Han Kim

EE787 Machine learning Kyung Hee University

Multi-class classification

Multi-class classification

- classification is multi-class when raw output variable v is a categorical $v \in$ $\mathcal{V}=\left\{v_{1}, \ldots, v_{K}\right\}$ with $K>2$
- v_{i} are called classes or labels
- we'll also denote them as $1, \ldots, K$
- examples:
- $\mathcal{V}=\{$ Yes, MAYbe, No $\}$
- $\mathcal{V}=\{$ albania, azerbaijan,$\ldots\}$
- $\mathcal{V}=\{$ hindi, tamil, $\ldots\}$
- $\mathcal{V}=$ set of English words in some dictionary
- $\mathcal{V}=$ set of m ! possible orders of m horses in a race
- a classifier predicts label \hat{v} given raw input u
- called a K-class classifier

Confusion matrix

Confusion matrix

- measure performance of a specific predictor on a data set with n records
- for each data record i, there are K^{2} possible values of $\left(\hat{v}^{i}, v^{i}\right)$
- $K \times K$ confusion matrix is defined by

$$
C_{i j}=\# \text { records with } \hat{v}=v_{i} \text { and } v=v_{j}
$$

- entries in C add up to n
- column sums of C give number of records in each class in the data set
- $C_{i i}$ is the number of times we predict v_{i} correctly
- $C_{i j}$ for $i \neq j$ is the number of times we mistook v_{j} for v_{i}
- there are $K(K-1)$ different types of errors we can make
- there are $K(K-1)$ different error rates, $C_{i j} / n, i \neq j$

Neyman-Pearson error

- $E_{j}=\sum_{i \neq j} C_{i j}$ is number of times we mistook v_{j} for another class
- E_{j} / n is the error rate of mistaking v_{j}
- we will scalarize these K error rates using a weighted sum
- the Neyman-Pearson error is

$$
\sum_{j=1}^{K} \kappa_{j} E_{j}=\sum_{i \neq j} \kappa_{j} C_{i j}
$$

where κ is a weight vector with nonnegative entries

- κ_{j} is how much we care about mistaking v_{j}
- for $\kappa_{j}=1$ for all i, Neyman-Pearson error is the error rate

Embedding

Embedding v

- we embed raw output $v \in \mathcal{V}$ into \mathbf{R}^{m} as $y=\psi(v) \in \mathbf{R}^{m}$ (cf. boolean classification, where we embed v into \mathbf{R})
- we can describe ψ by the K vectors $\psi_{1}=\psi\left(v_{1}\right), \ldots, \psi_{K}=\psi\left(v_{K}\right)$ (i.e., just say what vector in \mathbf{R}^{m} each $v \in \mathcal{V}$ maps to)
- we call the vector ψ_{i} the representative of v_{i}
- we call the set $\left\{\psi_{1}, \ldots, \psi_{K}\right\}$ the constellation
- examples:
- TRUE $\mapsto 1$, false $\mapsto-1$
- Yes $\mapsto 1$, MAYBE $\mapsto 0$ NO $\mapsto-1$
- YES $\mapsto(1,0)$, MAYBE $\mapsto(0,0)$, NO $\mapsto(0,1)$
- Apple $\mapsto(1,0,0)$, orange $\mapsto(0,1,0)$, banana $\mapsto(0,0,1)$
- (Horse 3, Horse 1, Horse 2) $\mapsto(3,1,2)$
- word2vec (maps 1 M words to vectors in \mathbf{R}^{300})

One-hot embedding

- a simple generic embedding of K classes into \mathbf{R}^{K}
- $\psi\left(v_{i}\right)=\psi_{i}=e_{i}$
- variation (embedding K classes into \mathbf{R}^{K-1}):
- choose one of the classes as the default, and map it to $0 \in \mathbf{R}^{K-1}$
- map the others to the unit vectors $e_{1}, \ldots, e_{K-1} \in \mathbf{R}^{K-1}$

Nearest neighbor un-embedding

- given prediction $\hat{y} \in \mathbf{R}^{m}$, we un-embed to get \hat{v}
- we denote our un-emdedding using the symbol $\psi^{\dagger}: \mathrm{R}^{m} \rightarrow \mathcal{V}$
- we define the un-embedding function ψ^{\dagger} as

$$
\psi^{\dagger}(\hat{y})=\underset{v \in \mathcal{V}}{\operatorname{argmin}}\|\hat{y}-\psi(v)\|
$$

(we can break ties any way we like)

- i.e., we choose the raw value associated with the nearest representative
- called nearest neighbor un-embedding

Un-embedding boolean

- embed TRUE $\mapsto 1=\psi_{1}$ and FALSE $\mapsto-1=\psi_{2}$
- un-embed via

$$
\psi^{\dagger}(\hat{y})= \begin{cases}\text { TRUE } & \hat{y} \geq 0 \\ \text { FALSE } & \hat{y}<0\end{cases}
$$

Un-embedding yes, maybe, no

- embed yes $\mapsto(1,0)$, maybe $\mapsto(0,0)$, no $\mapsto(0,1)$
- un-embed via

$$
\psi^{\dagger}(\hat{y})= \begin{cases}\text { YES } & \hat{y}_{1}>1 / 2, \hat{y}_{1}>\hat{y}_{2} \\ \text { MAYBE } & \hat{y}_{1}<1 / 2, \hat{y}_{2}<1 / 2 \\ \text { NO } & \hat{y}_{2}>1 / 2, \hat{y}_{1}<\hat{y}_{2}\end{cases}
$$

(can choose any value on boundaries)

Un-embedding one-hot

- one-hot embedding: $\psi_{i}=e_{i}, i=1, \ldots, K$
- un-embed via $\psi^{\dagger}(y)=\operatorname{argmin}_{i}\left\|y-e_{i}\right\|_{2}=\operatorname{argmax}_{i} y_{i}$
- intuition:
- you can subtract one from one component of a vector
- to get the smallest norm
- best choice is the largest entry of the vector

Voronoi diagram

- ψ^{\dagger} partitions \mathbf{R}^{m} into the K regions $\left\{y \mid \psi^{\dagger}(y)=v_{i}\right\}$, for $i=1, \ldots, K$
- regions are polyhedra
- called Voronoi diagram
- boundaries between regions are perpendicular bisectors between pairs of representatives ψ_{i}, ψ_{j}

Margins

Margins and decision boundaries

- given prediction $\hat{y} \in \mathbf{R}^{m}$, we un-embed via $\hat{v}=\psi^{\dagger}(\hat{y})$
- $\psi^{\dagger}(\hat{y})=v_{j}$ when \hat{y} is closer to ψ_{j} than the other representatives, i.e.,

$$
\left\|\hat{y}-\psi_{j}\right\|<\left\|\hat{y}-\psi_{i}\right\| \text { for } i \neq j
$$

- define the negative margin function $M_{i j}$ by

$$
\begin{aligned}
M_{i j}(\hat{y}) & =\left(\left\|\hat{y}-\psi_{j}\right\|^{2}-\left\|\hat{y}-\psi_{i}\right\|^{2}\right) /\left(2\left\|\psi_{i}-\psi_{j}\right\|\right) \\
& =\frac{2\left(\psi_{i}-\psi_{j}\right)^{\top} \hat{y}+\left\|\psi_{j}\right\|^{2}-\left\|\psi_{i}\right\|^{2}}{2\left\|\psi_{i}-\psi_{j}\right\|}
\end{aligned}
$$

- so $\psi^{\dagger}(\hat{y})=v_{j}$ when $M_{i j}(\hat{y})<0$ for all $i \neq j$

Margins and decision boundaries

- linear equation

$$
M_{i j}(\hat{y})=0
$$

defines a hyperplane called the perpendicular bisector between ψ_{i} and ψ_{j}

- it is the decision boundary between ψ_{i} and ψ_{j}
- \hat{y} is the correct prediction, when $v=v_{j}$, if

$$
\max _{i \neq j} M_{i j}(\hat{y})<0
$$

Margins and decision boundaries

- boolean: $\psi_{1}=-1$ and $\psi_{2}=1$ and

$$
M_{21}(\hat{y})=\hat{y} \quad M_{12}(\hat{y})=-\hat{y}
$$

- one-hot: $\psi_{j}=e_{j}$ for all j, so

$$
M_{i j}(\hat{y})=\frac{\hat{y}_{i}-\hat{y}_{j}}{\sqrt{2}}
$$

Margins

margins M_{21} and M_{31}

margins M_{12} and M_{32}

Vector ERM

Vector prediction

- after embedding raw data u and v we have data pair (x, y)
- the target y is a vector (which takes only the values $\psi_{1}, \ldots, \psi_{K}$)
- predictor is a function $g: \mathbf{R}^{d} \rightarrow \mathbf{R}^{m}$
- our final (raw) prediction is $\hat{v}=\psi^{\dagger}(\hat{y})$

Vector linear predictor

- vector linear predictor has form $\hat{y}=g(x)=\theta^{\top} x$
- same form as when y is a scalar, but here θ is a $d \times m$ parameter matrix
- θ_{23} is how much x_{2} affects \hat{y}_{3}
- reduces to the usual parameter vector when $m=1$ (i.e., y is scalar)

Vector ERM

- linear model $\hat{y}=\theta^{\top} x, \theta \in \mathbf{R}^{d \times m}$
- choose parameter matrix θ to minimize $\mathcal{L}(\theta)+\lambda r(\theta)$
- $\mathcal{L}(\theta)$ is the empirical risk

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{y}^{i}, y^{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta^{\top} x^{i}, y^{i}\right)
$$

with loss function $\ell: \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ (i.e., ℓ takes two arguments, each in R^{m})

- $\lambda \geq 0$ is regularization parameter
- $r(\theta)$ is the regularizer

Derivative of the empirical risk

- loss $\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta^{\top} x^{i}, y^{i}\right)$
- we'd like to apply the gradient method
- $D \mathcal{L}(\theta)$ is the derivative of \mathcal{L} with respect to θ (a matrix)
- we have

$$
(D \mathcal{L}(\theta))_{i j}=\frac{\partial \mathcal{L}(\theta)}{\partial \theta_{i j}}
$$

- then the first-order Taylor approximation is

$$
\mathcal{L}(\theta+\delta \theta) \approx \mathcal{L}(\theta)+\operatorname{trace}\left(D \mathcal{L}(\theta)^{\top} \delta \theta\right)
$$

- we have

$$
D \mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} x^{i}\left(\nabla_{1} \ell\left(\theta^{\top} x^{i}, y^{i}\right)\right)^{\top}
$$

where ∇_{1} means the gradient with respect to the first argument

Matrix regularizers

Matrix regularizers

- general penalty regularizer: $r(\theta)=\sum_{i=1}^{d} \sum_{j=1}^{m} q\left(\theta_{i j}\right)$
- sum square regularizer: $r(\theta)=\|\theta\|_{F}^{2}=\sum_{i=1}^{d} \sum_{j=1}^{m} \theta_{i j}^{2}$
- the Frobenius norm of a matrix θ is $\left(\sum_{i, j} \theta_{i j}^{2}\right)^{1 / 2}$
- sum absolute or ℓ_{1} regularizer: $r(\theta)=\|\theta\|_{\text {sav }}=\sum_{i=1}^{d} \sum_{j=1}^{m}\left|\theta_{i j}\right|$

Multi-class loss functions

Multi-class loss functions

- $\ell(\hat{y}, y)$ is how much prediction \hat{y} bothers us when observed value is y
- but the only possible values of y are $\psi_{1}, \ldots, \psi_{K}$
- so we can simply give the K functions of \hat{y}

$$
\ell\left(\hat{y}, \psi_{j}\right), \quad j=1, \ldots, K
$$

- $\ell\left(\hat{y}, \psi_{j}\right)$ is how much we dislike predicting \hat{y} when $y=\psi_{j}$

Neyman-Pearson loss

- Neyman-Pearson loss is

$$
\ell^{\mathrm{NP}}\left(\hat{y}, \psi_{j}\right)= \begin{cases}0 & \text { if } \max _{i \neq j} M_{i j}<0 \\ \kappa_{j} & \text { otherwise }\end{cases}
$$

- Neyman-Pearson risk $\mathcal{L}^{\mathrm{NP}}(\theta)$ is the Neyman-Pearson error
- but $\nabla \mathcal{L}^{\mathrm{NP}}(\theta)$ is either zero or undefined
- so there's no gradient to tell us which way to change θ to reduce $\mathcal{L}(\theta)$

Proxy loss

- we will use a proxy loss that
- approximates, or at least captures the flavor of, the Neyman-Pearson loss
- is more easily optimized (e.g., is convex or has nonzero derivative)
- we want a proxy loss function
- with $\ell\left(\hat{y}, \psi_{j}\right)$ small whenever $M_{i j}<0$ for $i \neq j$
- and not small otherwise
- which has other nice characteristics, e.g., differentiable or convex

Multi-class hinge loss

- hinge loss is

$$
\ell\left(\hat{y}, \psi_{j}\right)=\kappa_{j} \max _{i \neq j}\left(1+M_{i j}(\hat{y})\right)_{+}
$$

- $\ell\left(\hat{y}, \psi_{j}\right)$ is zero when the correct prediction is made, with a margin at least one
- convex but not differentiable
- for boolean embedding with $\psi_{1}=-1, \psi_{2}=1$, reduces to

$$
\ell(\hat{y},-1)=\kappa_{1}(1+\hat{y})_{+}, \quad \ell(\hat{y}, 1)=\kappa_{2}(1-\hat{y})_{+}
$$

usual hinge loss when $\kappa_{1}=1$

Multi-class hinge loss

Multi-class logistic loss

- logistic loss is

$$
\ell\left(\hat{y}, \psi_{j}\right)=\kappa_{j} \log \left(\sum_{i=1}^{K} \exp \left(M_{i j}(\hat{y})\right)\right)
$$

- recall that $M_{j j}=0$
- convex and differentiable
- for boolean embedding with $\psi_{1}=-1, \psi_{2}=1$, reduces to

$$
\ell(\hat{y},-1)=\kappa_{1} \log \left(1+e^{\hat{y}}\right), \quad \ell(\hat{y}, 1)=\kappa_{2} \log \left(1+e^{-\hat{y}}\right)
$$

usual logistic loss when $\kappa_{1}=1$

Multi-class logistic loss

Soft-max function

- the function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
f(x)=\log \sum_{i=1}^{n} \exp \left(x_{i}\right)
$$

is called the log-sum-exp function

- it is a convex differentiable approximation to the max function
- we have

$$
\max \left\{x_{1}, \ldots, x_{n}\right\} \leq f(x) \leq \max \left\{x_{1}, \ldots, x_{n}\right\}+\log (n)
$$

Example: Iris

Example: Iris

- famous example dataset by Fisher, 1936
- measurements of 150 plants, 50 from each of 3 species
- iris setosa, iris versicolor, iris virginica
- four measurements: sepal length, sepal width, petal length, petal width

Example: Iris

Classification with two features

- using only sepal_length and sepal_width
- one-hot embedding, multi-class logistic loss
- confusion matrix $C=\left[\begin{array}{ccc}50 & 0 & 0 \\ 0 & 38 & 13 \\ 0 & 12 & 37\end{array}\right]$

Classification with two features

- let θ_{i} be the i th column of θ
- plot shows $\theta_{i}^{\top} \phi(u)$ as function of u
- one-hot embedding of v, so un-embedding is $\hat{v}=\arg \max _{i} \theta_{i}^{\top} x$

Example: Iris confusion matrix

- we train using multi-class logistic loss, with the same κ_{i} for all i
- for this example, train using all the data
- resulting confusion matrix is

$$
C=\left[\begin{array}{ccc}
50 & 0 & 0 \\
0 & 49 & 1 \\
0 & 1 & 49
\end{array}\right]
$$

