
EE787 Autumn 2019 Jong-Han Kim

Multi-Class Classification

Jong-Han Kim

EE787 Machine learning
Kyung Hee University

1

Multi-class classification

2

Multi-class classification

I classification is multi-class when raw output variable v is a categorical v 2
V = fv1; : : : ; vKg with K > 2

I vi are called classes or labels

I we’ll also denote them as 1; : : : ;K

I examples:

I V = {yes, maybe, no}

I V = {albania, azerbaijan, . . . }

I V = {hindi, tamil, . . . }

I V = set of English words in some dictionary

I V = set of m! possible orders of m horses in a race

I a classifier predicts label v̂ given raw input u

I called a K-class classifier

3

Confusion matrix

4

Confusion matrix

I measure performance of a specific predictor on a data set with n records

I for each data record i, there are K2 possible values of (v̂i; vi)

I K �K confusion matrix is defined by

Cij = # records with v̂ = vi and v = vj

I entries in C add up to n

I column sums of C give number of records in each class in the data set

I Cii is the number of times we predict vi correctly

I Cij for i 6= j is the number of times we mistook vj for vi

I there are K(K � 1) different types of errors we can make

I there are K(K � 1) different error rates, Cij=n, i 6= j

5

Neyman-Pearson error

I Ej =
P

i6=j
Cij is number of times we mistook vj for another class

I Ej=n is the error rate of mistaking vj

I we will scalarize these K error rates using a weighted sum

I the Neyman-Pearson error is

KX
j=1

�jEj =
X
i 6=j

�jCij

where � is a weight vector with nonnegative entries

I �j is how much we care about mistaking vj

I for �j = 1 for all i, Neyman-Pearson error is the error rate

6

Embedding

7

Embedding v

I we embed raw output v 2 V into Rm as y = (v) 2 Rm

(cf. boolean classification, where we embed v into R)

I we can describe by the K vectors 1 = (v1); : : : ; K = (vK)

(i.e., just say what vector in Rm each v 2 V maps to)

I we call the vector i the representative of vi

I we call the set f 1; : : : ; Kg the constellation

I examples:

I true 7! 1, false 7! �1

I yes 7! 1, maybe 7! 0 no 7! �1

I yes 7! (1; 0), maybe 7! (0; 0), no 7! (0; 1)

I apple 7! (1; 0; 0), orange 7! (0; 1; 0), banana 7! (0; 0; 1)

I (Horse 3, Horse 1, Horse 2) 7! (3; 1; 2)

I word2vec (maps 1M words to vectors in R300)

8

One-hot embedding

I a simple generic embedding of K classes into RK

I (vi) = i = ei

I variation (embedding K classes into RK�1):

I choose one of the classes as the default, and map it to 0 2 RK�1

I map the others to the unit vectors e1; : : : ; eK�1 2 RK�1

9

Nearest neighbor un-embedding

I given prediction ŷ 2 Rm, we un-embed to get v̂

I we denote our un-emdedding using the symbol y : Rm ! V

I we define the un-embedding function y as

 y(ŷ) = argmin
v2V

kŷ � (v)k

(we can break ties any way we like)

I i.e., we choose the raw value associated with the nearest representative

I called nearest neighbor un-embedding

10

Un-embedding boolean

I embed true 7! 1 = 1 and false 7! �1 = 2

I un-embed via

 y(ŷ) =

(
true ŷ � 0

false ŷ < 0

11

Un-embedding yes, maybe, no

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

yesmaybe

no

ŷ1

ŷ2

I embed yes 7! (1; 0), maybe 7! (0; 0), no 7! (0; 1)

I un-embed via

 y(ŷ) =

8><
>:

yes ŷ1 > 1=2; ŷ1 > ŷ2

maybe ŷ1 < 1=2; ŷ2 < 1=2

no ŷ2 > 1=2; ŷ1 < ŷ2

(can choose any value on boundaries)
12

Un-embedding one-hot

I one-hot embedding: i = ei, i = 1; : : : ;K

I un-embed via y(y) = argmini ky � eik2 = argmaxi yi

I intuition:

I you can subtract one from one component of a vector

I to get the smallest norm

I best choice is the largest entry of the vector

13

Voronoi diagram

1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.2

1.4

1.6

1.8

2.0

I y partitions Rm into the K regions fy j y(y) = vig, for i = 1; : : : ;K

I regions are polyhedra

I called Voronoi diagram

I boundaries between regions are perpendicular bisectors between pairs of rep-
resentatives i; j

14

Margins

15

Margins and decision boundaries

I given prediction ŷ 2 Rm, we un-embed via v̂ = y(ŷ)

I y(ŷ) = vj when ŷ is closer to j than the other representatives, i.e.,

kŷ � jk < kŷ � ik for i 6= j

I define the negative margin function Mij by

Mij(ŷ) =
�
kŷ � jk2 � kŷ � ik2

�
=
�
2k i � jk

�
=

2(i � j)Tŷ + k jk2 � k ik2
2k i � jk

I so y(ŷ) = vj when Mij(ŷ) < 0 for all i 6= j

16

Margins and decision boundaries

I linear equation
Mij(ŷ) = 0

defines a hyperplane called the perpendicular bisector between i and j

I it is the decision boundary between i and j

I ŷ is the correct prediction, when v = vj , if

max
i6=j

Mij(ŷ) < 0

17

Margins and decision boundaries

I boolean: 1 = �1 and 2 = 1 and

M21(ŷ) = ŷ M12(ŷ) = �ŷ

I one-hot: j = ej for all j, so

Mij(ŷ) =
ŷi � ŷjp

2

18

Margins

3 2 1 0 1 2 3
3

2

1

0

1

2

3

31

2

y1

y2

-3 -2
-1

0
1 2

3

-3

-2

-1

0

1

2

3
0

1

2

3

4

5

6
margins M21 and M31

y1

y2

-3

-2

-1

0

1

2

3

-3-2
-1

0
12

3
0

1

2

3

4

5

6

margins M12 and M32

y1

y2
-3 -2

-1
0

1 2
3

-3

-2

-1

0

1

2

3
0

1

2

3

4

5

6
margins M13 and M23

y1

y2

19

Vector ERM

20

Vector prediction

I after embedding raw data u and v we have data pair (x; y)

I the target y is a vector (which takes only the values 1; : : : ; K)

I predictor is a function g : Rd ! Rm

I our final (raw) prediction is v̂ = y(ŷ)

21

Vector linear predictor

I vector linear predictor has form ŷ = g(x) = �Tx

I same form as when y is a scalar, but here � is a d�m parameter matrix

I �23 is how much x2 affects ŷ3

I reduces to the usual parameter vector when m = 1 (i.e., y is scalar)

22

Vector ERM

I linear model ŷ = �Tx, � 2 Rd�m

I choose parameter matrix � to minimize L(�) + �r(�)

I L(�) is the empirical risk

L(�) = 1

n

nX
i=1

`(ŷi; yi) =
1

n

nX
i=1

`(�Txi; yi)

with loss function ` : Rm � Rm ! R (i.e., ` takes two arguments, each in
Rm)

I � � 0 is regularization parameter

I r(�) is the regularizer

23

Derivative of the empirical risk

I loss L(�) = 1

n

Pn

i=1
`(�Txi; yi)

I we’d like to apply the gradient method

I DL(�) is the derivative of L with respect to � (a matrix)

I we have �
DL(�)

�
ij
=
@L(�)
@�ij

I then the first-order Taylor approximation is

L(� + ��) � L(�) + trace(DL(�)T��)

I we have

DL(�) = 1

n

nX
i=1

xi
�
r1`(�

Txi; yi)
�T

where r1 means the gradient with respect to the first argument

24

Matrix regularizers

25

Matrix regularizers

I general penalty regularizer: r(�) =
Pd

i=1

Pm

j=1
q(�ij)

I sum square regularizer: r(�) = k�k2F =
Pd

i=1

Pm

j=1
�2ij

I the Frobenius norm of a matrix � is
�P

i;j
�2ij

�1=2
I sum absolute or `1 regularizer: r(�) = k�ksav =

Pd

i=1

Pm

j=1
j�ij j

26

Multi-class loss functions

27

Multi-class loss functions

I `(ŷ; y) is how much prediction ŷ bothers us when observed value is y

I but the only possible values of y are 1; : : : ; K

I so we can simply give the K functions of ŷ

`(ŷ; j); j = 1; : : : ;K

I `(ŷ; j) is how much we dislike predicting ŷ when y = j

28

Neyman-Pearson loss

I Neyman-Pearson loss is

`NP(ŷ; j) =

(
0 if maxi 6=jMij < 0

�j otherwise

I Neyman-Pearson risk LNP(�) is the Neyman-Pearson error

I but rLNP(�) is either zero or undefined

I so there’s no gradient to tell us which way to change � to reduce L(�)

29

Proxy loss

I we will use a proxy loss that

I approximates, or at least captures the flavor of, the Neyman-Pearson loss

I is more easily optimized (e.g., is convex or has nonzero derivative)

I we want a proxy loss function

I with `(ŷ; j) small whenever Mij < 0 for i 6= j

I and not small otherwise

I which has other nice characteristics, e.g., differentiable or convex

30

Multi-class hinge loss

I hinge loss is
`(ŷ; j) = �j max

i6=j
(1 +Mij(ŷ))+

I `(ŷ; j) is zero when the correct prediction is made, with a margin at least
one

I convex but not differentiable

I for boolean embedding with 1 = �1, 2 = 1, reduces to

`(ŷ;�1) = �1(1 + ŷ)+; `(ŷ; 1) = �2(1� ŷ)+
usual hinge loss when �1 = 1

31

Multi-class hinge loss

3 2 1 0 1 2 3
3

2

1

0

1

2

3

31

2

y1

y2

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3
0

2

4

6

8

10
loss `(ŷ; 1)

ŷ1

ŷ2

-3

-2

-1

0

1

2

3

-3-2-10123
0

2

4

6

8

10

loss `(ŷ; 2)

ŷ1

ŷ2 -3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3
0

2

4

6

8

10
loss `(ŷ; 3)

ŷ1

ŷ2

32

Multi-class logistic loss

I logistic loss is

`(ŷ; j) = �j log

KX
i=1

exp(Mij(ŷ))

!

I recall that Mjj = 0

I convex and differentiable

I for boolean embedding with 1 = �1, 2 = 1, reduces to

`(ŷ;�1) = �1 log(1 + eŷ); `(ŷ; 1) = �2 log(1 + e�ŷ)

usual logistic loss when �1 = 1

33

Multi-class logistic loss

3 2 1 0 1 2 3
3

2

1

0

1

2

3

31

2

y1

y2

-6
-4

-2
0

2
4

6

-6

-4

-2

0

2

4

6
0

2

4

6

8

10
loss `(ŷ; 1)

ŷ1

ŷ2

-6

-4

-2

0

2

4

6

-6-4-20246
0

2

4

6

8

10

loss `(ŷ; 2)

ŷ1

ŷ2 -6
-4

-2
0

2
4

6

-6

-4

-2

0

2

4

6
0

2

4

6

8

10
loss `(ŷ; 3)

ŷ1

ŷ2

34

Soft-max function

I the function f : Rn ! R

f(x) = log

nX
i=1

exp(xi)

is called the log-sum-exp function

I it is a convex differentiable approximation to the max function

I we have

maxfx1; : : : ; xng � f(x) � maxfx1; : : : ; xng+ log(n)

35

Example: Iris

36

Example: Iris

I famous example dataset by Fisher, 1936

I measurements of 150 plants, 50 from each of 3 species

I iris setosa, iris versicolor, iris virginica

I four measurements: sepal length, sepal width, petal length, petal width

37

Example: Iris

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

sepal length

2.0

2.5

3.0

3.5

4.0

4.5

sepal width

1

2

3

4

5

6

7

petal length

5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

2.0 2.5 3.0 3.5 4.0 4.5 2 4 6 0.0 0.5 1.0 1.5 2.0 2.5

petal width

38

Classification with two features

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

4.5

I using only sepal_length and sepal_width

I one-hot embedding, multi-class logistic loss

I confusion matrix C =

2
4 50 0 0

0 38 13

0 12 37

3
5

39

Classification with two features

4
5

6
7

8

2.0

2.5

3.0

3.5

4.0

4.5
-40

-30

-20

-10

0

10

20

30

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

4.5

I let �i be the ith column of �

I plot shows �Ti �(u) as function of u

I one-hot embedding of v, so un-embedding is v̂ = argmaxi �Ti x
40

Example: Iris confusion matrix

I we train using multi-class logistic loss, with the same �i for all i

I for this example, train using all the data

I resulting confusion matrix is

C =

2
4 50 0 0

0 49 1

0 1 49

3
5

41

