Neural Networks

Jong-Han Kim

EE787 Fundamentals of machine learning Kyung Hee University

Features

- neural networks can be thought of as a way to form features that works directly from the data (as opposed to hand-engineered features)
- the resulting features are often useful for multiple regression/classification tasks
- they often require a lot of data

Features

- so far we have considered predictors which depend linearly on θ

$$
\hat{y}=g(x)=\theta^{\top} x
$$

called a linear model

- if we believe v and u are not related linearly, we add features, e.g.,

$$
x=\phi(u)=\left(1, u, u^{2}, u^{3}, \ldots, u^{d-1}\right)
$$

- this gives a better fit, i.e., reduces the training loss
- we do not get a better fit using linear features, e.g.,

$$
x=\phi(u)=\left(1, u_{1}, u_{2}, u_{1}+u_{2}\right)
$$

Features

- a useful class of features consists of a nonlinear function $h: \mathbf{R} \rightarrow \mathbf{R}$ composed with a linear function

$$
\phi(u)=h\left(w_{1}+w_{2} u_{1}+\cdots+w_{d+1} u_{d}\right)
$$

- h must be nonlinear; if h is linear, then this does not improve the fit
- common choices are $h(x)=(x)_{+}$or $h(x)=\log \left(1+e^{x}\right)$
- coefficients w_{1}, \ldots, w_{d+1} are called weights
- one possibility: add features by randomly choosing weights

Neurons

- a neuron is a feature map of the form

$$
\phi(u)=h\left(w_{1}+w_{2} u_{1}+\cdots+w_{d+1} u_{d}\right)
$$

- the function h is called the activation function
- common choices of activation function:
- sigmoid: $h(u)=1 /\left(1+e^{-u}\right)$
- tanh: $h(u)=\tanh (u)=\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}}$
- hinge or relu: $h(u)=\max (u, 0)$
- any nonlinear function can be used

Composing features

- we can compose features, e.g.,

$$
\begin{aligned}
u_{8} & =\phi_{1}\left(u_{1}, u_{2}\right) \\
u_{9} & =\phi_{2}\left(u_{3}, u_{4}, u_{5}\right) \\
u_{10} & =\phi_{3}\left(u_{6}, u_{7}\right) \\
u_{11} & =\phi_{4}\left(u_{8}, u_{9}\right)
\end{aligned}
$$

- predictor is $\hat{y}=\theta_{1}+\theta_{2} u_{11}+\theta_{3} u_{10}$
- the composition defines a graph
- each node corresponds to a feature variable
- left-most nodes, called input nodes, correspond to raw data records

Neural networks

- feature maps

$$
\begin{aligned}
u_{8} & =\phi_{1}\left(u_{1}, u_{2}\right) \\
u_{9} & =\phi_{2}\left(u_{3}, u_{4}, u_{5}\right) \\
u_{10} & =\phi_{3}\left(u_{6}, u_{7}\right) \\
u_{11} & =\phi_{3}\left(u_{8}, u_{9}\right)
\end{aligned}
$$

- in a linear model, choose θ to minimize regularized loss
- in a neural network
- each feature map is a neuron
- we minimize over θ and all weights $w_{i j}$

Neural networks

- in a neural network, we optimize over both θ and the weights $w_{i j}$
- by optimizing $w_{i j}$ we are selecting features
- the resulting features are often useful for many problems
- called pre-trained neural networks
- pre-training chooses weights $w_{i j}$ by extensive training on a large amount of data
- resulting neurons are used as features for ERM
- often applications only choose the output weights θ

Terminology

Optimization

- use optimization to choose weights θ and $w_{i j}$
- gradient method (and variants) are widely used
- since the predictor is not linear in the weights $w_{i j}$, convexity of the loss function does not help

Computing gradients

- apply chain rule to differentiate composite functions
- called back propagation
- simpler alternative: automatic differentiation
- distinct from numerical differentiation, which computes approximate derivatives via

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- automatic differentiation
- implemented either symbolically or by operator overloading
- returns exact derivatives (when activation functions are differentiable)

Computing derivatives

```
import Base: *,+,exp
struct Var
    x
    dx
end
*(a::Var, b::Var) = Var(a.x*b.x, b.x*a.dx + a.x*b.dx)
*(a::Number, b::Var) = Var(a*b.x, a*b.dx)
*(a::Var, b::Number) = b*a
+(a::Var, b::Var) = Var(a.x+b.x, a.dx + b.dx)
exp(a::Var) = Var(exp(a.x), exp(a.x)*a.dx)
f(a) = a*exp(a^3 + 7*a) # define function f
x = 2
    # evaluate derivative at x=2
xvar = Var(x,1)
dfdx = f(xvar).dx # returns derivative
```


Example: classification

- logistic loss $l(\hat{y}, y)=\log \left(1+e^{-y \hat{y}}\right)$

- 2 hidden layers
- sigmoid activation $h(u)=1 /\left(1+e^{-x}\right)$
- weights $w \in \mathbf{R}^{22}$ and $\theta \in \mathbf{R}^{3}$

Example: classification

- the predictor is

$$
\begin{aligned}
u_{3} & =h\left(w_{1}+w_{2} u_{1}+w_{3} u_{2}\right) \\
u_{4} & =h\left(w_{4}+w_{5} u_{1}+w_{6} u_{2}\right) \\
u_{5} & =h\left(w_{7}+w_{8} u_{1}+w_{9} u_{2}\right) \\
u_{6} & =h\left(w_{10}+w_{11} u_{1}+w_{12} u_{2}\right) \\
u_{7} & =h\left(w_{13}+w_{14} u_{3}+w_{15} u_{4}+w_{16} u_{5}+w_{17} u_{6}\right) \\
u_{8} & =h\left(w_{18}+w_{19} u_{3}+w_{20} u_{4}+w_{21} u_{5}+w_{22} u_{6}\right) \\
\hat{y} & =\theta_{1}+\theta_{2} u_{7}+\theta_{3} u_{8}
\end{aligned}
$$

- we choose θ, w to minimize

$$
\frac{1}{n} \sum_{i=1}^{n} l\left(\hat{y}^{i}, y^{i}\right)+\lambda\|\theta\|^{2}+\mu\|w\|^{2}
$$

Neurons

Neurons

Predictor

Example: classification

- plots above show approximate convergence to a local minimum after 250 iterations
- can subsequently use only the important neurons, i.e., remove neurons for which corresponding coefficients are small and solve again

