Optimization

Jong-Han Kim

EE787 Machine learning
Kyung Hee University

Optimization problems and algorithms

Optimization problem

$$
\text { minimize } \quad f(\theta)
$$

- $\theta \in \mathbf{R}^{d}$ is the variable or decision variable
- $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is the objective function
- goal is to choose θ to minimize f
- θ^{\star} is optimal means that for all $\theta, f(\theta) \geq f\left(\theta^{\star}\right)$
- $f^{\star}=f\left(\theta^{\star}\right)$ is the optimal value of the problem
- optimization problems arise in many fields and applications, including machine learning

Optimality condition

- let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_{i}}$ exist
- if θ^{\star} is optimal, then $\nabla f\left(\theta^{\star}\right)=0$
- $\nabla f(\theta)=0$ is called the optimality condition for the problem
- there can be points that satisfy $\nabla f(\theta)=0$ but are not optimal
- we call points that satisfy $\nabla f(\theta)=0$ stationary points
- not all stationary points are optimal

Solving optimization problems

- in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta)=\|X \theta-y\|^{2}$
- optimality condition is $\nabla f(\theta)=2 X^{T}(X \theta-y)=0$
- this has (unique) solution $\theta^{\star}=\left(X^{T} X\right)^{-1} X^{T} y=X^{\dagger} y$ (when columns of X are linearly independent)
- in other cases, we resort to an iterative algorithm that computes a sequence $\theta^{1}, \theta^{2}, \ldots$ with, hopefully, $f\left(\theta^{k}\right) \rightarrow f^{\star}$ as $k \rightarrow \infty$

Iterative algorithms

- iterative algorithm computes a sequence $\theta^{1}, \theta^{2}, \ldots$
- θ^{k} is called the k th iterate
- θ^{1} is called the starting point
- many iterative algorithms are descent methods, which means

$$
f\left(\theta^{k+1}\right)<f\left(\theta^{k}\right), \quad k=1,2, \ldots
$$

i.e., each iterate is better than the previous one

- this means that $f\left(\theta^{k}\right)$ converges, but not necessarily to f^{\star}

Stopping criterion

- in practice, we stop after a finite number K of steps
- typical stopping criterion: stop if $\left\|\nabla f\left(\theta^{k}\right)\right\| \leq \epsilon$ or $k=k^{\max }$
- ϵ is a small positive number, the stopping tolerance
- $k^{\text {max }}$ is the maximum number of iterations
- in words: we stop when θ^{k} is almost a stationary point
- we hope that $f\left(\theta^{K}\right)$ is not too much bigger than f^{\star}
- or more realistically, that θ^{K} is at least useful for our application

Non-heuristic and heuristic algorithms

- in some cases we know that $f\left(\theta^{k}\right) \rightarrow f^{\star}$, for any θ^{1}
- in words: we'll get to a solution if we keep iterating
- called non-heuristic
- other algorithms do not guarantee that $f\left(\theta^{k}\right) \rightarrow f^{\star}$
- we can hope that even if $f\left(\theta^{k}\right) \nrightarrow f^{\star}, \theta^{k}$ is still useful for our application
- called heuristic

Convex functions

- a function $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex if for any $\theta, \tilde{\theta}$, and α with $0 \leq \alpha \leq 1$,

$$
f(\alpha \theta+(1-\alpha) \tilde{\theta}) \leq \alpha f(\theta)+(1-\alpha) f(\tilde{\theta})
$$

- roughly speaking, f has 'upward curvature'
- for $d=1$, same as $f^{\prime \prime}(\theta) \geq 0$ for all θ

Convex optimization

- optimization problem

$$
\text { minimize } f(\theta)
$$

is called convex if the objective function f is convex

- for convex optimization problem, $\nabla f(\theta)=0$ only for θ optimal, i.e., all stationary points are optimal
- algorithms for convex optimization are non-heuristic
- i.e., we can solve convex optimization problems (exactly, in principle)

Convex ERM problems

- regularized empirical risk function $f(\theta)=\mathcal{L}(\theta)+\lambda r(\theta)$, with $\lambda \geq 0$,

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} p\left(\theta^{\top} x^{i}-y^{i}\right), \quad r(\theta)=q\left(\theta_{1}\right)+\cdots+q\left(\theta_{d}\right)
$$

- f is convex if loss penalty p and parameter penalty q functions are convex
- convex penalties: square, absolute, tilted absolute, Huber
- non-convex penalties: log Huber, squareroot

Gradient method

Gradient method

- assume f is differentiable
- at iteration θ^{k}, create affine (Taylor) approximation of f valid near θ^{k}

$$
\hat{f}\left(\theta ; \theta^{k}\right)=f\left(\theta^{k}\right)+\nabla f\left(\theta^{k}\right)^{T}\left(\theta-\theta^{k}\right)
$$

- $\hat{f}\left(\theta ; \theta^{k}\right) \approx f(\theta)$ for θ near θ^{k}
- choose θ^{k+1} to make $\hat{f}\left(\theta^{k+1} ; \theta^{k}\right)$ small, but with $\left\|\theta^{k+1}-\theta^{k}\right\|$ not too large
- choose θ^{k+1} to minimize $\hat{f}\left(\theta ; \theta^{k}\right)+\frac{1}{2 h^{k}}\left\|\theta-\theta^{k}\right\|^{2}$
- $h^{k}>0$ is a trust parameter or step length or learning rate
- solution is $\theta^{k+1}=\theta^{k}-h^{k} \nabla f\left(\theta^{k}\right)$
- roughly: take step in direction of negative gradient

Gradient method update

- choose θ^{k+1} to as minimizer of

$$
f\left(\theta^{k}\right)+\nabla f\left(\theta^{k}\right)^{T}\left(\theta-\theta^{k}\right)+\frac{1}{2 h^{k}}\left\|\theta-\theta^{k}\right\|^{2}
$$

- rewrite as

$$
f\left(\theta^{k}\right)+\frac{1}{2 h^{k}}\left\|\left(\theta-\theta^{k}\right)+h^{k} \nabla f\left(\theta^{k}\right)\right\|^{2}-\frac{h^{k}}{2}\left\|\nabla f\left(\theta^{k}\right)\right\|^{2}
$$

- first and third terms don't depend on θ
- middle term is minimized (made zero!) by choice

$$
\theta=\theta^{k}-h^{k} \nabla f\left(\theta^{k}\right)
$$

How to choose step length

- if h^{k} is too large, we can have $f\left(\theta^{k+1}\right)>f\left(\theta^{k}\right)$
- if h^{k} is too small, we have $f\left(\theta^{k+1}\right)<f\left(\theta^{k}\right)$ but progress is slow
- a simple scheme:
- if $f\left(\theta^{k+1}\right)>f\left(\theta^{k}\right)$, set $h^{k+1}=h^{k} / 2, \theta^{k+1}=\theta^{k}$
(a rejected step)
- if $f\left(\theta^{k+1}\right) \leq f\left(\theta^{k}\right)$, set $h^{k+1}=1.2 h^{k}$
(an accepted step)
- reduce step length by half if it's too long; increase it 20\% otherwise

Gradient method summary

choose an initial $\theta^{1} \in \mathbf{R}^{d}$ and $h^{1}>0$ (e.g., $\theta^{1}=0, h^{1}=1$)
for $k=1,2, \ldots, k^{\text {max }}$

1. compute $\nabla f\left(\theta^{k}\right)$; quit if $\left\|\nabla f\left(\theta^{k}\right)\right\|$ is small enough
2. form tentative update $\theta^{\text {tent }}=\theta^{k}-h^{k} \nabla f\left(\theta^{k}\right)$
3. if $f\left(\theta^{\text {tent }}\right) \leq f\left(\theta^{k}\right)$, set $\theta^{k+1}=\theta^{\text {tent }}, h^{k+1}=1.2 h^{k}$
4. else set $h^{k}:=0.5 h^{k}$ and go to step 2

Gradient method convergence

- (assuming some technical conditions hold) we have

$$
\left\|\nabla f\left(\theta^{k}\right)\right\| \rightarrow 0 \text { as } k \rightarrow \infty
$$

- i.e., the gradient method always finds a stationary point
- for convex problems
- gradient method is non-heuristic
- for any starting point $\theta^{1}, f\left(\theta^{k}\right) \rightarrow f^{\star}$ as $k \rightarrow \infty$
- for non-convex problems
- gradient method is heuristic
- we can (and often do) have $f\left(\theta^{k}\right) \nrightarrow f^{\star}$

Example: Convex objective

- optimal point is $\theta^{\star}=(2 / 3,2 / 3)$, with $f^{\star}=1 / 9$

Example: Convex objective

- $f\left(\theta^{k}\right)$ is a decreasing function of k, (roughly) exponentially
- $\left\|\nabla f\left(\theta^{k}\right)\right\| \rightarrow 0$ as $k \rightarrow \infty$

Example: Non-convex objective

- $f(\theta)=\frac{1}{3}\left(p^{\mathrm{lh}}\left(\theta_{1}+3\right)+p^{\mathrm{hh}}\left(2 \theta_{2}+6\right)+p^{\mathrm{hh}}\left(\theta_{1}+\theta_{2}-1\right)\right)$
- f is sum of log-Huber functions, so not convex
- gradient algorithm converges, but limit depends on initial guess

Example: Non-convex objective

Example: Non-convex objective

Gradient method for ERM

Gradient of empirical risk function

- empirical risk is sum of terms for each data point

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{y}^{i}, y^{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta^{T} x^{i}, y^{i}\right)
$$

- convex if loss function ℓ is convex in first argument
- gradient is sum of terms for each data point

$$
\nabla \mathcal{L}(\theta)=\nabla \mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(\theta^{T} x^{i}, y^{i}\right) x^{i}
$$

where $\ell^{\prime}(\hat{y}, y)$ is derivative of ℓ with respect to its first argument \hat{y}

Evaluating gradient of empirical risk function

- compute n-vector $\hat{y}^{k}=X \theta^{k}$
- compute n-vector z^{k}, with entries $z_{i}^{k}=\ell^{\prime}\left(\hat{y}_{i}^{k}, y^{i}\right)$
- compute d-vector $\nabla \mathcal{L}\left(\theta^{k}\right)=(1 / n) X^{T} z^{k}$
- first and third steps are matrix-vector multiplication, each costing $2 n d$ flops
- second step costs order n flops (dominated by other two)
- total is $4 n d$ flops

Validation

- can evaluate empirical risk on train and test while gradient is running
- optimization is only a surrogate for what we want (i.e., a predictor that predicts well on unseen data)
- predictor is often good enough well before gradient descent has converged

