EE787 Autumn 2019 Jong-Han Kim

Optimization

Jong-Han Kim

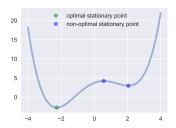
EE787 Machine learning Kyung Hee University Optimization problems and algorithms

Optimization problem

minimize $f(\theta)$

- \bullet $\theta \in \mathbb{R}^d$ is the *variable* or *decision variable*
- ▶ $f: \mathbf{R}^d \to \mathbf{R}$ is the *objective function*
- ightharpoonup goal is to choose heta to minimize f
- $lackbox{}{} heta^{\star}$ is optimal means that for all $heta, \ f(heta) \geq f(heta^{\star})$
- $f^* = f(\theta^*)$ is the *optimal value* of the problem
- optimization problems arise in many fields and applications, including machine learning

Optimality condition



- ▶ let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- ▶ if θ^* is optimal, then $\nabla f(\theta^*) = 0$
- ▶ $\nabla f(\theta) = 0$ is called the *optimality condition* for the problem
- lacktriangle there can be points that satisfy abla f(heta) = 0 but are not optimal
- we call points that satisfy $\nabla f(\theta) = 0$ stationary points
- not all stationary points are optimal

4

Solving optimization problems

- ▶ in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||^2$
 - optimality condition is $\nabla f(\theta) = 2X^T(X\theta y) = 0$
 - ▶ this has (unique) solution $\theta^* = (X^TX)^{-1}X^Ty = X^{\dagger}y$ (when columns of X are linearly independent)
- ▶ in other cases, we resort to an *iterative algorithm* that computes a sequence $\theta^1, \theta^2, \ldots$ with, hopefully, $f(\theta^k) \to f^*$ as $k \to \infty$

Iterative algorithms

- iterative algorithm computes a sequence $\theta^1, \theta^2, \dots$
- $\triangleright \theta^k$ is called the kth iterate
- \triangleright θ^1 is called the *starting point*
- ▶ many iterative algorithms are descent methods, which means

$$f(\theta^{k+1}) < f(\theta^k), \quad k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

lacktriangle this means that $f(\theta^k)$ converges, but not necessarily to f^\star

Stopping criterion

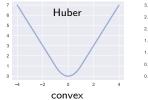
- ightharpoonup in practice, we stop after a finite number K of steps
- ▶ typical stopping criterion: stop if $||\nabla f(\theta^k)|| < \epsilon$ or $k = k^{\text{max}}$
- ightharpoonup ϵ is a small positive number, the stopping tolerance
- $\triangleright k^{\max}$ is the maximum number of iterations
- ightharpoonup in words: we stop when θ^k is almost a stationary point
- $lackbox{ we hope that } f(heta^K) \mbox{ is not too much bigger than } f^\star$
- \blacktriangleright or more realistically, that θ^K is at least useful for our application

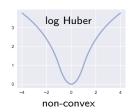
Non-heuristic and heuristic algorithms

- lacktriangle in some cases we ${\color{red}know}$ that $f(heta^k) o f^\star$, for any $heta^1$
- ▶ in words: we'll get to a solution if we keep iterating
- ▶ called *non-heuristic*

- lackbox other algorithms do not guarantee that $f(heta^k) o f^\star$
- lacktriangle we can hope that even if $f(heta^k)
 ot \to f^\star$, $heta^k$ is still useful for our application
- ▶ called *heuristic*

Convex functions





▶ a function $f: \mathbf{R}^d \to \mathbf{R}$ is *convex* if for any θ , $\tilde{\theta}$, and α with $0 \le \alpha \le 1$,

$$f(lpha heta + (1-lpha) ilde{ heta}) \leq lpha f(heta) + (1-lpha)f(ilde{ heta})$$

- ightharpoonup roughly speaking, f has 'upward curvature'
- ▶ for d=1, same as $f''(\theta) \ge 0$ for all θ

Convex optimization

 \blacktriangleright optimization problem $\mbox{minimize} \quad f(\theta)$ is called $\mbox{\it convex}$ if the objective function f is convex

▶ for convex optimization problem, $\nabla f(\theta) = 0$ only for θ optimal, *i.e.*, all stationary points are optimal

- ▶ algorithms for convex optimization are non-heuristic
- ▶ i.e., we can solve convex optimization problems (exactly, in principle)

Convex ERM problems

▶ regularized empirical risk function $f(\theta) = \mathcal{L}(\theta) + \lambda r(\theta)$, with $\lambda \geq 0$,

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n p(heta^\mathsf{T} x^i - y^i), \qquad r(heta) = q(heta_1) + \dots + q(heta_d)$$

lackbox f is convex if loss penalty p and parameter penalty q functions are convex

- ▶ convex penalties: square, absolute, tilted absolute, Huber
- non-convex penalties: log Huber, squareroot

Gradient method

Gradient method

- assume f is differentiable
- lacktriangle at iteration $heta^k$, create affine (Taylor) approximation of f valid near $heta^k$

$$\hat{f}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k)$$

- $ightharpoonup \hat{f}(heta; heta^k) pprox f(heta)$ for heta near $heta^k$
- lacktriangle choose $heta^{k+1}$ to make $\hat{f}(heta^{k+1}; heta^k)$ small, but with $\| heta^{k+1} heta^k\|$ not too large
- ▶ choose θ^{k+1} to minimize $\hat{f}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta \theta^k||^2$
- $b h^k > 0$ is a trust parameter or step length or learning rate
- ▶ solution is $\theta^{k+1} = \theta^k h^k \nabla f(\theta^k)$
- roughly: take step in direction of negative gradient

Gradient method update

ightharpoonup choose θ^{k+1} to as minimizer of

$$f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k) + \frac{1}{2h^k} ||\theta - \theta^k||^2$$

rewrite as

$$f(\theta^{k}) + \frac{1}{2h^{k}} ||(\theta - \theta^{k}) + h^{k} \nabla f(\theta^{k})||^{2} - \frac{h^{k}}{2} ||\nabla f(\theta^{k})||^{2}$$

- \blacktriangleright first and third terms don't depend on θ
- ▶ middle term is minimized (made zero!) by choice

$$\theta = \theta^k - h^k \nabla f(\theta^k)$$

How to choose step length

- lacktriangle if h^k is too large, we can have $f(\theta^{k+1}) > f(\theta^k)$
- lacktriangleright is too small, we have $f(\theta^{k+1}) < f(\theta^k)$ but progress is slow

- a simple scheme:
 - ▶ if $f(\theta^{k+1}) > f(\theta^k)$, set $h^{k+1} = h^k/2$, $\theta^{k+1} = \theta^k$ (a rejected step)
 ▶ if $f(\theta^{k+1}) \le f(\theta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)
- ▶ reduce step length by half if it's too long; increase it 20% otherwise

Gradient method summary

choose an initial $\theta^1 \in \mathbf{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0$, $h^1 = 1$)

for
$$k = 1, 2, \ldots, k^{\mathsf{max}}$$

- 1. compute $\nabla f(\theta^k)$; quit if $||\nabla f(\theta^k)||$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$
- 3. if $f(\theta^{\text{tent}}) \leq f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
- 4. else set $h^k := 0.5h^k$ and go to step 2

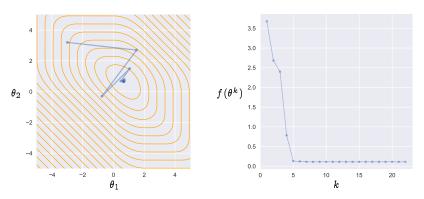
Gradient method convergence

(assuming some technical conditions hold) we have

$$||\nabla f(\theta^k)|| o 0 \text{ as } k o \infty$$

- ▶ i.e., the gradient method always finds a stationary point
- ▶ for convex problems
 - ▶ gradient method is *non-heuristic*
 - lackbox for any starting point $heta^1$, $f(heta^k) o f^\star$ as $k o\infty$
- ▶ for non-convex problems
 - gradient method is heuristic
 - lacksquare we can (and often do) have $f(heta^k)
 ot \to f^\star$

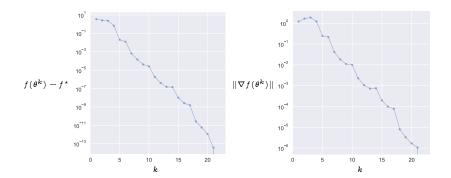
Example: Convex objective



$$\blacktriangleright \ f(\theta) = \tfrac{1}{3} \big(p^\mathsf{hub}(\theta_1 - 1) + p^\mathsf{hub}(\theta_2 - 1) + p^\mathsf{hub}(\theta_1 + \theta_2 - 1) \big)$$

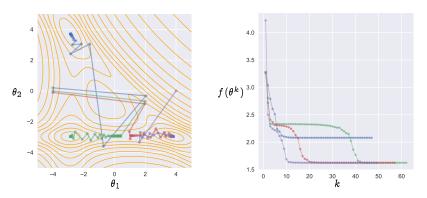
- ightharpoonup f is convex
- \blacktriangleright optimal point is $\theta^* = (2/3, 2/3)$, with $f^* = 1/9$

Example: Convex objective



- lacksquare $f(\theta^k)$ is a decreasing function of k, (roughly) exponentially
- $ightharpoonup ||
 abla f(heta^k)||
 ightarrow 0 \ ext{as} \ k
 ightarrow \infty$

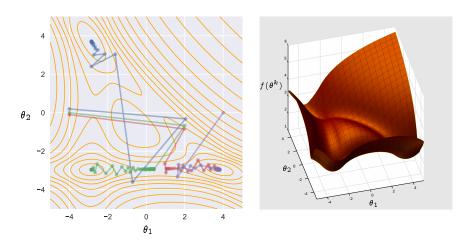
Example: Non-convex objective



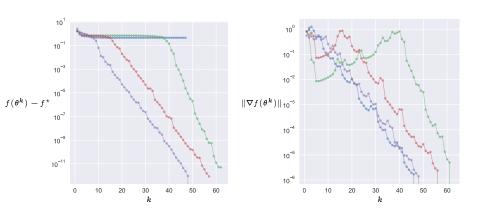
$$f(\theta) = \frac{1}{3} (p^{\mathsf{lh}}(\theta_1 + 3) + p^{\mathsf{lh}}(2\theta_2 + 6) + p^{\mathsf{lh}}(\theta_1 + \theta_2 - 1))$$

- ightharpoonup f is sum of log-Huber functions, so not convex
- ▶ gradient algorithm converges, but limit depends on initial guess

Example: Non-convex objective



Example: Non-convex objective



Gradient method for ERM

Gradient of empirical risk function

empirical risk is sum of terms for each data point

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i) = rac{1}{n} \sum_{i=1}^n \ell(heta^T x^i, y^i)$$

- ightharpoonup convex if loss function ℓ is convex in first argument
- gradient is sum of terms for each data point

$$abla \mathcal{L}(heta) =
abla \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell'(heta^T x^i, y^i) x^i$$

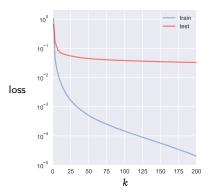
where $\ell'(\hat{y},y)$ is derivative of ℓ with respect to its first argument \hat{y}

Evaluating gradient of empirical risk function

- ightharpoonup compute n-vector $\hat{y}^k = X\theta^k$
- $lackbox{}$ compute $n\text{-vector }z^k$, with entries $z^k_i=\ell'(\hat{y}^k_i,y^i)$
- $lackbox{compute d-vector }
 abla \mathcal{L}(heta^k) = (1/n)X^Tz^k$

- ▶ first and third steps are matrix-vector multiplication, each costing 2nd flops
- second step costs order n flops (dominated by other two)
- ▶ total is 4nd flops

Validation



- ▶ can evaluate empirical risk on train and test while gradient is running
- ▶ optimization is only a surrogate for what we want (*i.e.*, a predictor that predicts well on unseen data)
- > predictor is often good enough well before gradient descent has converged