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Prox-gradient method
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Minimizing composite functions

I want to minimize F (�) = f(�) + g(�) (called composite function)

I f is differentiable, but g need not be

I example: minimize L(�) + �r(�), with r(�) = k�k1

I we’ll see idea of gradient method extends directly to composite functions
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Selective linearization

I at iteration k, linearize f but not g

F̂ (�; �k) = f(�k) +rf(�k)T (� � �
k) + g(�)

I want F̂ (�; �k) small, but with � near �k

I choose �k+1 to minimize F̂ (�; �k) + 1

2hk
k� � �kk2, with hk > 0

I same as minimizing

g(�) +
1

2hk
k� � (�k � h

krf(�k))k2

I for many ‘simple’ functions g, this minimization can be done analytically

I this iteration from �k to �k+1 is called prox-gradient step
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Prox-gradient iteration

I prox-gradient iteration has two parts:

1. gradient step: �k+1=2 = �k � hkrf(�k)

2. prox step: choose �k+1 to minimize g(�) + 1

2hk
k� � �k+1=2k2

(�k+1=2 is an intermediate iterate, in between �k and �k+1)

I step 1 handles differentiable part of objective, i.e., f

I step 2 handles second part of objective, i.e., g
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Proximal operator

I given function q : Rd ! R, and � > 0,

proxq;�(v) = argmin
�

�
q(�) +

1

2�
k� � vk2

�

is called the proximal operator of q at v, with parameter �

I the prox-gradient step can be expressed as

�
k+1 = proxg;hk(�

k+1=2) = proxg;hk(�
k � h

krf(�k))

I hence the name prox-gradient iteration
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How to choose step length

I same as for gradient, but using F (�) = f(�) + g(�)

I a simple scheme:

I if F (�k+1) > F (�k), set hk+1 = hk=2, �k+1 = �k (a rejected step)

I if F (�k+1) � F (�k), set hk+1 = 1:2hk (an accepted step)

I reduce step length by half if it’s too long; increase it 20% otherwise
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Stopping criterion

I stopping condition for prox-gradient method:
rf(�k+1)�

1

hk
(�k+1 � �

k+1=2)

 � �

I analog of krf(�k+1)k � � for gradient method

I second term � 1

hk
(�k+1 � �k+1=2) serves the purpose of a gradient for g

(which need not be differentiable)
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Prox-gradient method summary

choose an initial �1 2 Rd and h1 > 0 (e.g., �1 = 0, h1 = 1)

for k = 1; 2; : : : ; kmax

1. gradient step. �k+1=2 = �k � hkrf(�k)

2. prox step. �tent = argmin�
�
g(�) + 1

2hk
k� � �k+1=2k2

�

3. if F (�tent) � F (�k),

(a) set �k+1 = �tent, hk+1 = 1:2hk

(b) quit if
rf(�k+1)� 1

hk
(�k+1 � �k+1=2)

 � �

4. else set hk := 0:5hk and go to step 1
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Prox-gradient method convergence

I prox-gradient method always finds a stationary point

I suitably defined for non-differentiable functions

I assuming some technical conditions hold

I for convex problems

I prox-gradient method is non-heuristic

I for any starting point �1, F (�k)! F ? as k!1

I for non-convex problems

I prox-gradient method is heuristic

I we can (and often do) have F (�k) 6! F ?
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Prox-gradient for regularized ERM
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Prox-gradient for sum squares regularizer

I let’s apply prox-gradient method to F (�) = L(�) + �k�k22

I f(�) = L(�)

I g(�) = �k�k2
2
= ��2

1
+ � � �+ ��2d

I in prox step, we need to minimize ��2i +
1

2hk
(�i � �

k+1=2
i )2 over �i

I solution is �i = 1

1+2�hk
�
k+1=2
i

I so prox step just shrinks the gradient step �k+1=2 by the factor 1

1+2�hk

I prox-gradient iteration:

1. gradient step: �k+1=2 = �k � hkrL(�k)

2. prox step: �k+1 = 1

1+2�hk
�k+1=2
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Prox-gradient for `1 regularizer

I let’s apply prox-gradient method to F (�) = L(�) + �k�k1

I f(�) = L(�)

I g(�) = �k�k1 = �j�1j+ � � �+ �j�dj

I in prox step, we need to minimize �j�ij+
1

2hk
(�i � �

k+1=2
i )2 over �i

I solution is

�
k+1
i =

8<
:

�
k+1=2
i � �hk �

k+1=2
i > �hk

0 j�
k+1=2
i j � �hk

�
k+1=2
i + �hk �

k+1=2
i < ��hk

I called soft threshold function

I sometimes written as

�
k+1
i = S�hk(�

k+1=2
i ) = sign(�k+1=2i )(j�

k+1=2
i j � �h

k)+

= (�
k+1=2
i � �h

k)+ � (��
k+1=2
i � �h

k)+
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Soft threshold function

�

St(�)

t�t

I prox-gradient iteration for regularized ERM with `1 regularization:

1. gradient step: �k+1=2 = �k � hkrL(�k)

2. prox step: �k+1i = S�hk(�
k+1=2
i ) for i = 1; : : : ; d.

I the soft threshold step shrinks all coefficients

I and sets the small ones to zero
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Prox-gradient step for nonnegative regularizer

I let’s apply prox-gradient method to F (�) = L(�) + r(�), where r(�) = 0 for
� � 0, 1 otherwise

I f(�) = L(�)

I g(�) = q(�1) + � � �+ q(�d)

I in prox step, we need to minimize q(�i) +
1

2hk
(�i � �

k+1=2
i )2 over �i

I solution is �i =
�
�
k+1=2
i

�
+

I so prox step just replaces the gradient step �
k+1=2
i with its positive part

I prox gradient iteration:

1. gradient step: �k+1=2 = �k � hkrL(�k)

2. prox step: �k+1 =
�
�k+1=2

�
+
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Example
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I synthetic data, n = 500, d = 200

I lasso (square loss, `1 regularization), � = 0:1
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