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Sensitivity

I we have a linear predictor ŷ = g(x) = �Tx

I if j�ij is large, then the prediction is very sensitive to xi

(i.e., small changes in xi lead to large changes in the prediction)

I large sensitivity can lead to overfit, poor generalization
(which would turn up in validation)

I for x1 = 1 (the constant feature), there is no sensitivity, since the feature
does not change

I suggests that we would like � (or �2:d if x1 = 1) not too large
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Regularizer

I we will measure the size of � using a regularizer function r : Rd ! R

I r(�) is a measure of the size of � (or �2:d)

I quadratic regularizer (a.k.a. `2 or sum-of-squares):

r(�) = k�k2 = �
2
1 + � � �+ �

2
d

I absolute value regularizer (a.k.a. `1):

r(�) = k�k1 = j�1j+ � � �+ j�dj
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Regularized empirical risk minimization

I predictor should fit the given data well, i.e., we want empirical risk

L(�) = 1

n

nX
i=1

`(�Txi; yi)

to be small

I predictor should not be too sensitive, i.e., we want r(�) small

I to trade off these two objectives, form regularized empirical risk

L(�) + �r(�)

where � � 0 is the regularization parameter (or hyper-parameter)

I regularized empirical risk minimization (RERM): choose � to minimize regu-
larized empirical risk

I an optimization problem
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Regularized empirical risk minimization

I for � = 0, RERM reduces to ERM

I RERM produces a family of predictors, one for each value of �

I in practice, we choose a few tens of values of �, usually logarithmically spaced
over a wide range

I use validation to choose among the candidate predictors

I we choose the largest value of � that gives near minimum test error
(i.e., least sensitive predictor that generalizes well)
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Ridge regression

I ridge regression: square loss and regularizer r(�) = k�k2 (or k�2:dk2 if x1 = 1)

I also called Tykhonov regularized least squares

I regularized empirical risk is

L(�) + �r(�) = kX� � yk2 + �k�k2

=


�

Xp
�I

�
� �

�
y

0

�
2

I so optimal � is

�
? =

�
Xp
�I

�y �
y

0

�
= (XT

X + �I)�1XT
y

I (how do you modify this to handle r(�) = k�2:dk2?)
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Example: House prices

I sale prices of 2930 homes in Ames, Iowa from 2006 to 2010

I 80 features

I we use 16 features
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Example: Regression
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I we manually remove 4 outliers with area > 4000

(we’ll see later how to detect outliers)
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Example: Regression
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I split data randomly into 1164 training, 291 test

I target is log(price)

I standardize all features (and log(price))

I training error 0.1060, test error 0.1361

I plot shows all test points
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Example: Ridge regression
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I leftmost error is training error with no regularization: 0.1060

I rightmost error is variance of training data: 0.9787

I plot of �i versus � (on right) is called regularization path

I rightmost � has �0 = �0:0043, the mean of training y values
10



Example: Ridge regression
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I regularization � = 187 is optimal; improves test performance a bit

I � is shrunk by regularization, so predictor is less sensitive
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Example: Ridge regression

2 1 0 1 2 3
y

2

1

0

1

2

3

pr
ed

ic
te

d 
y

I least squares test error is 0.1361, with k�k � 0:55

I ridge regression test error (with � = 178) is 0.1295 with k�k � 0:46

I ridge regression predictor is less sensitive
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Example: Piecewise linear fit
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I features x = (1; u; (u� 0:2)+; (u� 0:4)+; (u� 0:6)+; (u� 0:8)+)

I � = 1 gives � = (0:36; 0:25;�0:057;�0:056; 0:089; 0:26)

I � = 10�5 gives � = (0:05; 2:9;�3:9; 1:6;�2; 4:8)

13



Fitting predictors with more parameters than data points
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I this makes no sense in general

I but with regularization, you can do this

I � = 1 gives � = (0:55; 0:039; 0:033; 0:022; 0:011;�0:0007)

I � = 10�5 gives � = (0:46; 0:42; 0:22;�0:18;�0:58;�0:98)
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Fitting predictors with more parameters than data points
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I minimum point balances fitting training data versus sensitivity

15


