Non-Quadratic Regularizers

Jong-Han Kim

EE787 Machine learning
Kyung Hee University

Regularizers

Regularizers

- motivation:
- large θ_{i} makes prediction $\theta^{\top} x$ sensitive to value of x_{i}
- so we want θ (or $\theta_{2: d}$ if $x_{1}=1$) small
- regularizer $r: \mathbf{R}^{d} \rightarrow \mathbf{R}$ measures the size of θ
- usually regularizer is separable,

$$
r(\theta)=q\left(\theta_{1}\right)+\cdots+q\left(\theta_{d}\right)
$$

where $q: \mathbf{R} \rightarrow \mathbf{R}$ is a penalty function for the predictor coefficients

Sum squares regularizer

- sum squares regularizer uses square penalty $q^{\text {sar }}(a)=a^{2}$

$$
r(\theta)=\|\theta\|^{2}=\theta_{1}^{2}+\cdots+\theta_{d}^{2}
$$

- also called quadratic, Tychonov, or ℓ_{2} regularizer

Sensitivity interpretation

- suppose the feature vector x changes to $\tilde{x}=x+\delta$
- δ is the perturbation or change in x
- the change in prediction is $\left|\theta^{\top} \tilde{x}-\theta^{\top} x\right|=\left|\theta^{\top} \delta\right|$
- how big can this be, if δ is small, i.e., $\|\delta\| \leq \epsilon$?
- by Cauchy-Schwarz inequality, $\left|\theta^{\top} \delta\right| \leq\|\theta\|\| \| \delta\|\leq \epsilon\| \theta \|$
- and the choice $\delta=\frac{\epsilon}{\|\theta\|} \theta$ achieves this maximum change in prediction
- so $\|\theta\|$ is a measure of the worst-case change in prediction when x is perturbed by δ, with $\|\delta\| \leq 1$

ℓ_{1} regularizer

- sum absolute or ℓ_{1} regularizer uses absolute value penalty $q^{\text {abs }}(a)=|a|$

$$
r(\theta)=\|\theta\|_{1}=\left|\theta_{1}\right|+\cdots+\left|\theta_{d}\right|
$$

- $\|\theta\|_{1}$ is ℓ_{1} norm of θ
- like the Euclidean or ℓ_{2} norm $\|\theta\|$, it is a norm, i.e., a measure of the size of the vector θ
- Euclidean norm is often written as $\|\theta\|_{2}$ to distinguish it from the ℓ_{1} norm
- they are both members of the p-norm family, defined as

$$
\|\theta\|_{p}=\left(\left|\theta_{1}\right|^{p}+\cdots+\left|\theta_{d}\right|^{p}\right)^{1 / p}
$$

for $p \geq 1$

Sensitivity interpretation

- suppose the feature vector x changes to $\tilde{x}=x+\delta$
- now we assume $\left|\delta_{i}\right| \leq \epsilon$, i.e., each feature can change by $\pm \epsilon$
- how big can the change in prediction $\left|\theta^{\top} \tilde{x}-\theta^{\top} x\right|=\left|\theta^{\top} \delta\right|$ be?
\checkmark the choice $\delta_{i}=\epsilon \operatorname{sign}\left(\theta_{i}\right)$ maximizes the change in prediction, i.e.,
- $\delta_{i}=\epsilon$ if $\theta_{i} \geq 0$
- $\delta_{i}=-\epsilon$ if $\theta_{i}<0$
- with this choice the change in prediction is

$$
\epsilon\left|\theta^{\top} \operatorname{sign}(\theta)\right|=\epsilon\left(\left|\theta_{1}\right|+\cdots+\left|\theta_{d}\right|\right)=\epsilon\|\theta\|_{1}
$$

- so $\|\theta\|_{1}$ is a measure of the worst-case change in prediction when x is perturbed entrywise by 1
- use square loss $\ell(\hat{y}, y)=(\hat{y}-y)^{2}$
- choosing θ to minimize $\mathcal{L}(\theta)+\lambda\|\theta\|_{2}^{2}$ is called ridge regression
- choosing θ to minimize $\mathcal{L}(\theta)+\lambda\|\theta\|_{1}$ is called lasso regression
- invented by (Stanford's) Rob Tibshirani, 1994
- widely used in advanced machine learning
- unlike ridge regression, there is no formula for the lasso parameter vector
- but we can efficiently compute it anyway (since it's convex)
- the lasso regression model has some interesting properties

Sparsifying regularizers

Sparse coefficient vector

- suppose θ is sparse, i.e., many of its entries are zero
- prediction $\theta^{\top} x$ does not depend on features x_{i} for which $\theta_{i}=0$
- this means we select some features to use (i.e., those with $\theta_{i} \neq 0$)
- (possible) practical benefits of sparse θ :
- can improve performance when many features are actually irrelevant
- makes predictor simpler to interpret

Sparse coefficient vectors via ℓ_{1} regularization

using ℓ_{1} regularization leads to sparse coefficient vectors
$r(\theta)=\|\theta\|_{1}$ is called a sparsifying regularizer
rough explanation:

- for square penalty, once θ_{i} is small, θ_{i}^{2} is very small
- so incentive for sum squares regularizer to make a coefficient smaller decreases once it is small
- for absolute penalty, incentive to make θ_{i} smaller keeps up all the way until it's zero

Example

- artificially generated 50 data points, 200 features
- only a few features are relevant
- left hand plots use Tychonov, right hand use lasso

Example

- sorted $\left|\theta_{i}\right|$ at optimal λ
- lasso solution has only 35 non-zero components

Example

- choose λ based on regularization path with test data
- keep features corresponding to largest components of θ and retrain
- plots above use most important 7 features identified by lasso

Even stronger sparsifiers

- $q(a)=|a|^{1 / 2}$
- called $\ell_{0.5}$ regularizer
- but you shouldn't use this term since

$$
\left(\left|\theta_{1}\right|^{0.5}+\cdots+\left|\theta_{d}\right|^{0.5}\right)^{2}
$$

is not a norm (see VMLS)

- 'stronger' sparsifier than ℓ_{1}
- but not convex so computing θ is heuristic

Example

- ℓ_{2}, ℓ_{1}, and square root regularization

Nonnegative regularizer

Nonegative coefficients

- in some cases we know or require that $\theta_{i} \geq 0$
- this means that when x_{i} increases, so must our prediction
- we can think of this constraint as regularization with penalty function

$$
q(a)= \begin{cases}0 & a \geq 0 \\ \infty & a<0\end{cases}
$$

- example: y is lifespan, x_{i} measures healthy behavior i
- with quadratic loss, called nonnegative least squares (NNLS)
- common heuristic for nonnegative least squares: use $\left(\theta^{\text {ls }}\right)_{+}$(works poorly)

Example

- feature vector $x=\left(1, u,(u-0.2)_{+}, \ldots,(u-0.8)_{+}\right)$
- nonnegative θ_{i} means predictor function is convex (curves up)
- NNLS loss 0.59, LS loss 0.30 , heuristic loss 15.05

How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

- for each candidate regularizer, choose λ to minimize test error (and maybe a little larger ...)
- use the regularizer that gives the best test error
- then make up a story about why you knew that would be the best

