
EE787 Autumn 2019 Jong-Han Kim

Non-Quadratic Regularizers

Jong-Han Kim

EE787 Machine learning
Kyung Hee University

1



Regularizers

2



Regularizers

I motivation:

I large �i makes prediction �Tx sensitive to value of xi

I so we want � (or �2:d if x1 = 1) small

I regularizer r : Rd ! R measures the size of �

I usually regularizer is separable,

r(�) = q(�1) + � � �+ q(�d)

where q : R ! R is a penalty function for the predictor coefficients

3



Sum squares regularizer

I sum squares regularizer uses square penalty qsqr(a) = a2

r(�) = k�k2 = �
2
1 + � � �+ �

2
d

I also called quadratic, Tychonov, or `2 regularizer

4



Sensitivity interpretation

I suppose the feature vector x changes to ~x = x+ �

I � is the perturbation or change in x

I the change in prediction is j�T~x� �Txj = j�T�j

I how big can this be, if � is small, i.e., k�k � �?

I by Cauchy-Schwarz inequality, j�T�j � k�kk�k � �k�k

I and the choice � = �
k�k

� achieves this maximum change in prediction

I so k�k is a measure of the worst-case change in prediction when x is perturbed
by �, with k�k � 1

5



`1 regularizer

I sum absolute or `1 regularizer uses absolute value penalty qabs(a) = jaj

r(�) = k�k1 = j�1j+ � � �+ j�dj

I k�k1 is `1 norm of �

I like the Euclidean or `2 norm k�k, it is a norm, i.e., a measure of the size of
the vector �

I Euclidean norm is often written as k�k2 to distinguish it from the `1 norm

I they are both members of the p-norm family, defined as

k�kp = (j�1j
p + � � �+ j�dj

p)
1=p

for p � 1

6



Sensitivity interpretation

I suppose the feature vector x changes to ~x = x+ �

I now we assume j�ij � �, i.e., each feature can change by ��

I how big can the change in prediction j�T~x� �Txj = j�T�j be?

I the choice �i = � sign(�i) maximizes the change in prediction, i.e.,

I �i = � if �i � 0

I �i = �� if �i < 0

I with this choice the change in prediction is

�j�T sign(�)j = �(j�1j+ � � �+ j�dj) = �k�k1

I so k�k1 is a measure of the worst-case change in prediction when x is per-
turbed entrywise by 1

7



Lasso regression

I use square loss `(ŷ; y) = (ŷ � y)2

I choosing � to minimize L(�) + �k�k22 is called ridge regression

I choosing � to minimize L(�) + �k�k1 is called lasso regression

I invented by (Stanford’s) Rob Tibshirani, 1994

I widely used in advanced machine learning

I unlike ridge regression, there is no formula for the lasso parameter vector

I but we can efficiently compute it anyway (since it’s convex)

I the lasso regression model has some interesting properties

8



Sparsifying regularizers

9



Sparse coefficient vector

I suppose � is sparse, i.e., many of its entries are zero

I prediction �Tx does not depend on features xi for which �i = 0

I this means we select some features to use (i.e., those with �i 6= 0)

I (possible) practical benefits of sparse �:

I can improve performance when many features are actually irrelevant

I makes predictor simpler to interpret

10



Sparse coefficient vectors via `1 regularization

using `1 regularization leads to sparse coefficient vectors

r(�) = k�k1 is called a sparsifying regularizer

rough explanation:

I for square penalty, once �i is small, �2i is very small

I so incentive for sum squares regularizer to make a coefficient smaller decreases
once it is small

I for absolute penalty, incentive to make �i smaller keeps up all the way until
it’s zero

11



Example

2 1 0 1 2 3 4
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

test
train

5 4 3 2 1 0 1
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

test
train

2 1 0 1 2 3 4
log10(lambda)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

th
et

a

5 4 3 2 1 0 1
log10(lambda)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

th
et

a

I artificially generated 50 data points, 200 features

I only a few features are relevant

I left hand plots use Tychonov, right hand use lasso
12



Example

0 25 50 75 100 125 150 175 200
0.0

0.1

0.2

0.3

0.4

0.5

Tychonov

0 25 50 75 100 125 150 175 200
0.0

0.1

0.2

0.3

0.4

0.5

lasso

I sorted j�ij at optimal �

I lasso solution has only 35 non-zero components

13



Example

2 1 0 1 2 3 4
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

test
train

Tychonov

5 4 3 2 1 0 1
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

test
train

lasso

2 1 0 1 2 3 4
log10(lambda)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

th
et

a

Tychonov

5 4 3 2 1 0 1
log10(lambda)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

th
et

a

lasso

I choose � based on regularization path with test data

I keep features corresponding to largest components of � and retrain

I plots above use most important 7 features identified by lasso
14



Even stronger sparsifiers

I q(a) = jaj1=2

I called `0:5 regularizer

I but you shouldn’t use this term since�
j�1j

0:5 + � � �+ j�dj
0:5
�2

is not a norm (see VMLS)

I ‘stronger’ sparsifier than `1

I but not convex so computing � is heuristic

15



Example

4 2 0 2 4
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

test
train

4 2 0 2 4
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

test
train

0.0 0.5 1.0 1.5 2.0
log10(lambda)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

test
train

4 2 0 2 4
log10(lambda)

0.10

0.05

0.00

0.05

0.10

th
et

a

4 2 0 2 4
log10(lambda)

0.1

0.0

0.1

0.2

0.3

0.4

th
et

a

0.0 0.5 1.0 1.5 2.0
log10(lambda)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

th
et

a
I `2, `1, and square root regularization

16



Nonnegative regularizer

17



Nonegative coefficients

I in some cases we know or require that �i � 0

I this means that when xi increases, so must our prediction

I we can think of this constraint as regularization with penalty function

q(a) =

(
0 a � 0

1 a < 0

I example: y is lifespan, xi measures healthy behavior i

I with quadratic loss, called nonnegative least squares (NNLS)

I common heuristic for nonnegative least squares: use (�ls)+ (works poorly)

18



Example

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

I feature vector x = (1; u; (u� 0:2)+; : : : ; (u� 0:8)+)

I nonnegative �i means predictor function is convex (curves up)

I NNLS loss 0:59, LS loss 0:30, heuristic loss 15:05

19



How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

I for each candidate regularizer, choose � to minimize test error
(and maybe a little larger . . . )

I use the regularizer that gives the best test error

I then make up a story about why you knew that would be the best

20


