EE787 Autumn 2019 Jong-Han Kim

Supervised Learning via Empirical Risk Minimization

Jong-Han Kim

EE787 Machine learning Kyung Hee University

Predictors

Data fitting

lackbox we think $y\in \mathbf{R}$ and $x\in \mathbf{R}^d$ are (approximately) related by

$$y \approx f(x)$$

- ▶ *x* is called the *independent variable* or *feature vector*
- ▶ y is called the *outcome* or *response* or *target* or *label* or *dependent variable*
- often y is something we want to predict
- lacktriangle we don't know the 'true' relationship between x and y

Features

often x is a vector of features:

- documents
 - ightharpoonup x is word count histogram for a document
- patient data
 - ▶ x are patient attributes, test results, symptoms
- customers
 - ightharpoonup x is purchase history and other attributes of a customer

Where features come from

- we use u to denote the raw input data, such as a vector, word or text, image, video, audio, . . .
- $x = \phi(u)$ is the corresponding *feature vector*
- \blacktriangleright the function ϕ is called the *embedding* or *feature function*
- \blacktriangleright ϕ might be very simple or quite complicated
- lacktriangle similarly, the raw output data v can be featurized as $y=\psi(v)$
- lacktriangle often we take $\phi(u)_1=x_1=1$, the constant feature
- (much more on these ideas later)

Data and prior knowledge

- $lackbox{}$ we are given data $x^1,\ldots,x^n\in \mathbf{R}^d$ and $y^1,\ldots,y^n\in \mathbf{R}$
- \blacktriangleright (x^i, y^i) is the *i*th data pair or observation or example
- ▶ we also (might) have *prior knowledge* about what f might look like
 - $lackbox{ iny } e.g.,\ f$ is smooth or continuous: $f(x)pprox f(ilde{x})$ when x is near $ilde{x}$
 - ightharpoonup or we might know $y \geq 0$

Predictor

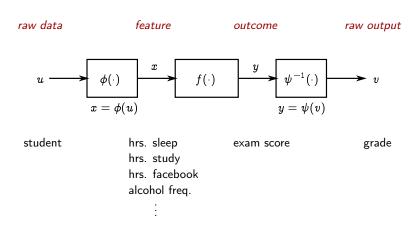
- lacktriangle we seek a *predictor* or *model* $g: \mathbf{R}^d
 ightarrow \mathbf{R}$
- lacktriangledown for feature vector x, our prediction (of y) is $\hat{y}=g(x)$
- predictor g is chosen based on both data and prior knowledge
- ▶ in terms of raw data, our predictor is

$$\hat{v} = \psi^{-1}(g(\phi(u)))$$

(with a slight variation when ψ is not invertible)

- $\hat{y}^i pprox y^i$ means our predictor does well on ith data pair
- lacktriangle but our real goal is to have $\hat{y} pprox y$ for (x,y) pairs we have not seen

Information flow

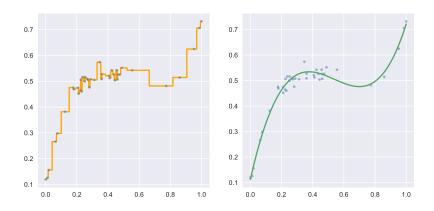


Prediction methods

- ▶ fraud, psychic powers, telepathy, magic sticks, incantations, crystals, hunches, statistics, AI, machine learning, data science
- ▶ and many algorithms . . .
- ▶ example: nearest neighbor predictor
 - lacktriangle given x, find its nearest neighbor x^i among given data
 - lacktriangle then predict $\hat{y}=g(x)=y^i$

A learning algorithm is a recipe for producing a predictor given data

Example: Nearest neighbor prediction



- ▶ left plot shows nearest neighbor prediction
- ▶ right plot shows fit with cubic polynomial

Linear predictors

Linear predictor

- ightharpoonup predictors that are linear functions of x are widely used
- a linear predictor has the form

$$g(x) = \theta^{\mathsf{T}} x$$

for some vector $\theta \in \mathbf{R}^d$, called the *predictor parameter vector*

- also called a regression model
- $ightharpoonup x_j$ is the jth feature, so the prediction is a linear combination of features

$$\hat{y}=g(x)= heta_1x_1+\cdots+ heta_dx_d$$

- lacktriangle we get to choose the predictor parameter vector $heta \in \mathbf{R}^d$
- ightharpoonup sometimes we write $g_{\theta}(x)$ to emphasize the dependence on θ

Interpreting a linear predictor

$$\hat{y} = g(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

- lacksquare $heta_3$ is the amount that prediction $\hat{y}=g(x)$ increases when x_3 increases by 1
 - \blacktriangleright particularly interpretable when x_3 is Boolean (only takes values 0 or 1)
- $m{
 ho}$ $heta_7=0$ means that the prediction does not depend on x_7
- \triangleright θ small means predictor is insensitive to changes in x:

$$|g(x) - g(ilde{x})| = \left| heta^{ op} x - heta^{ op} ilde{x}
ight| = \left| heta^{ op} (x - ilde{x})
ight| \leq || heta|| \; ||x - ilde{x}||$$

Norms

- ▶ a function $f: \mathbb{R}^d \to \mathbb{R}$ with dom $f = \mathbb{R}^d$ is called a *norm* if
 - 1. f is nonnegative:

$$f(x) \geq 0, \qquad \forall x \in \mathbf{R}^d$$

2. *f* is definite:

$$f(x) = 0 \implies x = 0$$

3. f is homogeneous:

$$f(tx) = |t|f(x), \qquad \forall x \in \mathbb{R}^d, t \in \mathbb{R}$$

4. f satisfies the triangle inequality:

$$f(x+y) \le f(x) + f(y), \qquad \forall x, y \in \mathsf{R}^d$$

Norms

- lacksquare norm is a generalization of the absolute value on f R: we say f(x)=||x||
- ightharpoonup we frequently say $||x||_{\text{symb}}$, to indicate a particular norm
- ▶ p-norm: with $p \ge 1$ we say,

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p
ight)^{1/p}$$

so

$$\|x\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2} \ \|x\|_1 = |x_1| + |x_2| + \dots + |x_d| \ \|x\|_{\infty} = \max_i |x_i|$$

with ||x|| without p typically implying $||x||_2$

Affine predictor

- ightharpoonup suppose the first feature is constant, $x_1=1$
- ▶ the linear predictor g is then an affine function of $x_{2:d}$, i.e., linear plus a constant

$$g(x) = \theta^{\mathsf{T}} x = \theta_1 + \theta_2 x_2 + \cdots + \theta_d x_d$$

- lacktriangledown eta_1 is called the *offset* or *constant term* in the predictor
- lackbox $heta_1$ is the prediction when all features (except the constant) are zero

Empirical risk minimization

Loss function

a loss or risk function $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ quantifies how well (more accurately, how badly) \hat{y} approximates y

- lacktriangle smaller values of $\ell(\hat{y},y)$ indicate that \hat{y} is a good approximation of y
- typically $\ell(y,y)=0$ and $\ell(\hat{y},y)\geq 0$ for all \hat{y},y

examples

- quadratic loss: $\ell(\hat{y}, y) = (\hat{y} y)^2$
- ▶ absolute loss: $\ell(\hat{y}, y) = |\hat{y} y|$

Empirical risk

how well does the predictor g fit a data set (x^i, y^i) , $i = 1, \ldots, n$, with loss ℓ ?

▶ the *empirical risk* is the average loss over the data points,

$$\mathcal{L} = rac{1}{n}\sum_{i=1}^n \ell(\hat{y}^i, y^i) = rac{1}{n}\sum_{i=1}^n \ell(g(x^i), y^i)$$

- \blacktriangleright if $\mathcal L$ is small, the predictor predicts the given data well
- \blacktriangleright when the predictor is parametrized by θ , we write

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(g_ heta(x^i), y^i)$$

to show the dependence on the predictor parameter θ

Mean square error

lacktriangle for square loss $\ell(\hat{y},y)=(\hat{y}-y)^2$, empirical risk is *mean-square error* (MSE)

$$\mathcal{L} = \mathsf{MSE} = rac{1}{n} \sum_{i=1}^n (g(x^i) - y^i)^2$$

 \blacktriangleright often we use root-mean-square error, RMSE = $\sqrt{\rm MSE}$, which has same units/scale as outcomes y^i

Mean absolute error

lacktriangledown for absolute value $\ell(\hat{y},y)=|\hat{y}-y|$, empirical risk is ${\it mean-absolute\ error}$

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n |g(x^i) - y^i|$$

- \blacktriangleright has same units/scale as outcomes y^i
- similar to, but not the same as, mean-square error

Empirical risk minimization

- ▶ choosing the parameter θ in a parametrized predictor $g_{\theta}(x)$ is called *fitting* the predictor (to data)
- empirical risk minimization (ERM) is a general method for fitting a parametrized predictor
- ▶ ERM: choose θ to minimize empirical risk $\mathcal{L}(\theta)$
- \blacktriangleright thus, ERM chooses θ by attempting to match given data
- often there is no analytic solution to this minimization problem, so we use numerical optimization to find θ that minimizes $\mathcal{L}(\theta)$ (more on this topic later)