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Unsupervised learning

I in supervised learning we deal with pairs of records u; v

I goal is to predict v from u using a prediction model

I the output records vi `supervise' the learning of the model

I in unsupervised learning, we deal with only records u

I goal is to build a data model of u, in order to

I reveal structure in u

I impute missing entries (�elds) in u

I detect anomalies

I yes, the �rst goal is vague . . .
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Embedding

I as usual we embed raw data u into a feature vector x = �(u) 2 Rd

I we then build a data model for the feature vectors

I we un-embed when needed, to go back to the raw vector u

I so we'll work with feature vectors from now on

I (embedded) data set has the form x1; : : : ; xn 2 Rd
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Data model

I a data model tells us what the vectors in some data set `look like'

I can be expressed quantitatively by an implausibility function or loss function

` : Rd ! R

I `(x) is how implausible x is as a data point

I `(x) small means x `looks like' our data, or is `typical'

I `(x) large means x does not look like our data

I if our model is probabilistic, i.e., x comes from a density p(x), we can take

`(x) = � log p(x), the negative log density

I other names for `(x): surprise, perplexity, . . .

I ` is often parametrized by a vector or matrix �, and denoted `�(x)
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A simple constant model
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I data model: x is near a �xed vector � 2 Rd

I � 2 Rd parametrizes the model

I some implausibility functions:

I `�(x) = kx� �k2 =
Pd

i=1
(xi � �i)

2 (square loss)

I `�(x) = kx� �k1 =
Pd

i=1
jxi � �ij (absolute loss)
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K-means data model
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I data model: x is close to one of the k representatives �1; : : : ; �k 2 R
d

I quantitatively: for our data points x, the quantity

`�(x) = min
i=1;:::;k

kx� �ik
2

i.e., the minimum distance squared to the representatives, is small

I d� k matrix � = [�1 � � � �k] parametrizes the k-means data model
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Imputing missing entries
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Imputing missing entries

I suppose x has some entries missing, denoted ? or NA or NaN

I K � f1; : : : ; dg is the set of known entries

I we use our data model to guess or impute the missing entries

I we'll denote the imputed vector as x̂

I x̂i = xi for i 2 K

I imputation example, with K = f1; 3g

x =

2
64

12:1

?

�2:3

?

3
75 =) x̂ =

2
64

12:1

-1.5

�2:3

3.4

3
75

I we are imputing or guessing x̂2 = �1:5, x̂4 = 3:4

I the other entries we know: x̂1 = x1 = 12:1, x̂3 = x3 = �2:3
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Imputation using a data model

I given partially speci�ed vector x we minimize over the unknown entries:

minimize `�(x̂)

subject to x̂i = xi; i 2 K

I i.e., impute the unknown entries to minimize the implausibility, subject to the

given known entries
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Imputing with constant data model
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x = (?; 2:8)
x̂ = (0:79; 2:8)

I given x with some entries unknown

I constant data model with implausibility function `�(x) = kx� �k2

I we minimize (x̂1 � �1)
2 + � � �+ (x̂d � �d)

2 subject to x̂i = xi for i 2 K

I so x̂i = xi for i 2 K

I for i 62 K, we take x̂i = �i

I i.e., for the unknown entries, guess the model parameter entries

I example has � = (0:79; 1:11)
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Imputing with k-means data model

I given x with some entries unknown

I k-means data model with implausibility function

`�(x) = mini=1;:::;k kx� �ik
2

I �nd nearest representative �j to x, using only known entries

I i.e., �nd j that minimizes
P

i2K
(xi � (�j)i)

2

I guess x̂i = (�j)i for i 62 K

I i.e., for the unknown entries, guess the entries of the closest representative
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Supervised learning as special case of imputation

I suppose we wish to predict y 2 R based on x 2 Rd

I we have some training data x1; : : : ; xn, y1; : : : ; yn

I de�ne (d+ 1)-vector ~x = (x; y)

I build data model for ~x using training data ~x1; : : : ; ~xn

I to predict y given x, impute last entry of ~x = (x; ?)
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Validating imputation

we can validate a proposed data model (and imputation method):

I divide data into a training and a test set

I build data model on the training set

I mask some entries in the vectors in the test set (i.e., replace them with ?)

I impute these entries and evaluate the average error or loss of the imputed

values, e.g., the RMSE
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Fitting data models
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Generic �tting method

I given data x1; : : : ; xn (with no missing entries), and parametrized implausi-

bility function `�(x)

I how do we choose the parameter �?

I average implausibility or empirical loss is

L(�) =
1

n

nX
i=1

`�(x
i)

I choose � to minimize L(�), (possibly) subject to � 2 �, the set of acceptable

parameters

I i.e., choose parameter � so the observed data is least implausible
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Fitting a constant model with sum squares loss

I sum squares implausibility function `�(x) = kx� �k2

I empirical loss is

L(�) =
1

n

nX
i=1

kxi � �k2

I minimizing over � yields

� =
1

n

nX
i=1

x
i

the mean of the data vectors
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Fitting a constant model with sum absolute loss

I sum absolute implausibility function `�(x) = kx� �k1

I empirical loss is

L(�) =
1

n

nX
i=1

kxi � �k1

I minimizing over � yields

� = median(x1; : : : ; xn)

the elementwise median of the data vectors
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Fitting a k-means model

I implausibility function `�(x) = minj=1;:::;k kx� �jk
2

I parameter is d� k matrix with columns �1; : : : ; �k

I empirical loss is

L(�) =
1

n

nX
i=1

min
j=1;:::;k

kxi � �jk
2

I this is the k-means objective function!

I we can use the k-means algorithm to (approximately) minimize L(�), i.e., �t

a k-means model
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K-means algorithm

I de�ne the assignment or clustering vector c 2 Rn

I ci is the cluster that data vector xi is in (so ci 2 f1; : : : ; kg)

I to minimize

L(�) =
1

n

nX
i=1

min
j=1;:::;k

kxi � �jk
2

we minimize 1
n

Pn

i=1
kxi � �cik

2 over both c and �1; : : : ; �k

I we can minimize over c using ci = argminj kx
i � �jk

2

I we can minimize over �1; : : : ; �k using �i as the average of fxj j cj = ig

I k-means algorithm alternates between these two steps

I it is a heuristic for (approximately) minimizing L(�)
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K-means example
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I 200 data points; reserve 40 for test
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K-means example
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I convergence after 4 iterations
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K-means example

0 10 20 30 40 50
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k
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I �t k-mean data model for k = 1; 2; : : : ; 50

I validate by removing randomly either u1 or u2 from each record in test set
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Revealing structure in data
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Structure from a data model

I a data model can reveal structure of the data

I can be used for other purposes, some of them vague

I a good k-means model suggests that data come from k di�erent `modes' or

`regimes' or `processes'

I examples:

I partition 5 sec mobile phone accelerometer data into di�erent patterns
(walking, sitting, running, biking, etc.)

I partition customer purchase data into market segments

I partition articles into di�erent topics, authors
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Features from a data model
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I we can use a k-means data model to generate new features

I one-hot: map x to ~x = ei, i = argminj kx� �jk
2

I soft version: map x to ~x 2 Rk, (� > 0 is a hyper-parameter)

~xi =
e�kx��ik

2=�2

e�kx��1k2=�2 + � � �+ e�kx��kk
2=�2

; i = 1; : : : ; k
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Missing entries in a data set

I we've so far assumed that there are no missing entries in the data set used

to build the data model

I let's see how to handle the case when entries are missing

I �rst, standardize data using known entries

I replace missing entries with zeros

I build data model

I use data model to impute missing entries

I now build new data model, and repeat
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Example: Missing entries in a data set
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I blue points known, purple points have missing x coordinate, green points

missing y coordinate, red points missing both
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Recommendation system

I features are movies; examples are customer ratings

I entries are either rating (say, between 1 and 5) or ? if the customer did not

rate that movie

I imputed entries are our guess of what rating the customer would give, if they

rated that movie

I we can recommend movies to a customer for which the imputed entry is large
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