Unsupervised Learning

Jong-Han Kim

EE787 Fundamentals of machine learning Kyung Hee University

Unsupervised learning

Unsupervised learning

- in supervised learning we deal with pairs of records u, v
- goal is to predict v from u using a prediction model
- the output records v^{i} 'supervise' the learning of the model
- in unsupervised learning, we deal with only records u
- goal is to build a data model of u, in order to
- reveal structure in u
- impute missing entries (fields) in u
- detect anomalies
- yes, the first goal is vague ...

Embedding

- as usual we embed raw data u into a feature vector $x=\phi(u) \in \mathbf{R}^{d}$
- we then build a data model for the feature vectors
- we un-embed when needed, to go back to the raw vector u
- so we'll work with feature vectors from now on
- (embedded) data set has the form $x^{1}, \ldots, x^{n} \in \mathbf{R}^{d}$

Data model

- a data model tells us what the vectors in some data set 'look like’
- can be expressed quantitatively by an implausibility function or loss function $\ell: \mathbf{R}^{d} \rightarrow \mathbf{R}$
- $\ell(x)$ is how implausible x is as a data point
- $\ell(x)$ small means x 'looks like' our data, or is 'typical'
- $\ell(x)$ large means x does not look like our data
- if our model is probabilistic, i.e., x comes from a density $p(x)$, we can take $\ell(x)=-\log p(x)$, the negative log density
- other names for $\ell(x)$: surprise, perplexity, \ldots
- ℓ is often parametrized by a vector or matrix θ, and denoted $\ell_{\theta}(x)$

A simple constant model

- data model: x is near a fixed vector $\theta \in \boldsymbol{R}^{d}$
- $\theta \in \mathbf{R}^{d}$ parametrizes the model
- some implausibility functions:
- $\ell_{\theta}(x)=\|x-\theta\|^{2}=\sum_{i=1}^{d}\left(x_{i}-\theta_{i}\right)^{2}$ (square loss)
- $\ell_{\theta}(x)=\|x-\theta\|_{1}=\sum_{i=1}^{d}\left|x_{i}-\theta_{i}\right|$ (absolute loss)

K-means data model

- data model: x is close to one of the k representatives $\theta_{1}, \ldots, \theta_{k} \in \boldsymbol{R}^{d}$
- quantitatively: for our data points x, the quantity

$$
\ell_{\theta}(x)=\min _{i=1, \ldots, k}\left\|x-\theta_{i}\right\|^{2}
$$

i.e., the minimum distance squared to the representatives, is small

- $d \times k$ matrix $\theta=\left[\theta_{1} \cdots \theta_{k}\right]$ parametrizes the k-means data model

Imputing missing entries

Imputing missing entries

- suppose x has some entries missing, denoted ? or NA or NaN
- $\mathcal{K} \subseteq\{1, \ldots, d\}$ is the set of known entries
- we use our data model to guess or impute the missing entries
- we'll denote the imputed vector as \hat{x}
- $\hat{x}_{i}=x_{i}$ for $i \in \mathcal{K}$
- imputation example, with $\mathcal{K}=\{1,3\}$

$$
x=\left[\begin{array}{c}
12.1 \\
? \\
-2.3 \\
?
\end{array}\right] \quad \Longrightarrow \quad \hat{x}=\left[\begin{array}{c}
12.1 \\
-1.5 \\
-2.3 \\
3.4
\end{array}\right]
$$

- we are imputing or guessing $\hat{x}_{2}=-1.5, \hat{x}_{4}=3.4$
- the other entries we know: $\hat{x}_{1}=x_{1}=12.1, \hat{x}_{3}=x_{3}=-2.3$

Imputation using a data model

- given partially specified vector x we minimize over the unknown entries:

$$
\begin{array}{ll}
\operatorname{minimize} & \ell_{\theta}(\hat{x}) \\
\text { subject to } & \hat{x}_{i}=x_{i}, \quad i \in \mathcal{K}
\end{array}
$$

- i.e., impute the unknown entries to minimize the implausibility, subject to the given known entries

Imputing with constant data model

- given x with some entries unknown
- constant data model with implausibility function $\ell_{\theta}(x)=\|x-\theta\|^{2}$
- we minimize $\left(\hat{x}_{1}-\theta_{1}\right)^{2}+\cdots+\left(\hat{x}_{d}-\theta_{d}\right)^{2}$ subject to $\hat{x}_{i}=x_{i}$ for $i \in \mathcal{K}$
- so $\hat{x}_{i}=x_{i}$ for $i \in \mathcal{K}$
- for $i \notin \mathcal{K}$, we take $\hat{x}_{i}=\theta_{i}$
- i.e., for the unknown entries, guess the model parameter entries
- example has $\theta=(0.79,1.11)$

Imputing with k-means data model

- given x with some entries unknown
- k-means data model with implausibility function

$$
\ell_{\theta}(x)=\min _{i=1, \ldots, k}\left\|x-\theta_{i}\right\|^{2}
$$

- find nearest representative θ_{j} to x, using only known entries
- i.e., find j that minimizes $\sum_{i \in \mathcal{K}}\left(x_{i}-\left(\theta_{j}\right)_{i}\right)^{2}$
- guess $\hat{x}_{i}=\left(\theta_{j}\right)_{i}$ for $i \notin \mathcal{K}$
- i.e., for the unknown entries, guess the entries of the closest representative

Supervised learning as special case of imputation

- suppose we wish to predict $y \in \mathbf{R}$ based on $x \in \mathbf{R}^{d}$
- we have some training data $x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}$
- define $(d+1)$-vector $\tilde{x}=(x, y)$
- build data model for \tilde{x} using training data $\tilde{x}^{1}, \ldots, \tilde{x}^{n}$
- to predict y given x, impute last entry of $\tilde{x}=(x$, ? $)$

Validating imputation

we can validate a proposed data model (and imputation method):

- divide data into a training and a test set
- build data model on the training set
- mask some entries in the vectors in the test set (i.e., replace them with ?)
- impute these entries and evaluate the average error or loss of the imputed values, e.g., the RMSE

Fitting data models

Generic fitting method

- given data x^{1}, \ldots, x^{n} (with no missing entries), and parametrized implausibility function $\ell_{\theta}(x)$
- how do we choose the parameter θ ?
- average implausibility or empirical loss is

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}\left(x^{i}\right)
$$

- choose θ to minimize $\mathcal{L}(\theta)$, (possibly) subject to $\theta \in \Theta$, the set of acceptable parameters
- i.e., choose parameter θ so the observed data is least implausible

Fitting a constant model with sum squares loss

- sum squares implausibility function $\ell_{\theta}(x)=\|x-\theta\|^{2}$
- empirical loss is

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left\|x^{i}-\theta\right\|^{2}
$$

- minimizing over θ yields

$$
\theta=\frac{1}{n} \sum_{i=1}^{n} x^{i}
$$

the mean of the data vectors

Fitting a constant model with sum absolute loss

- sum absolute implausibility function $\ell_{\theta}(x)=\|x-\theta\|_{1}$
- empirical loss is

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left\|x^{i}-\theta\right\|_{1}
$$

- minimizing over θ yields

$$
\theta=\operatorname{median}\left(x^{1}, \ldots, x^{n}\right)
$$

the elementwise median of the data vectors

Fitting a k-means model

- implausibility function $\ell_{\theta}(x)=\min _{j=1, \ldots, k}\left\|x-\theta_{j}\right\|^{2}$
- parameter is $d \times k$ matrix with columns $\theta_{1}, \ldots, \theta_{k}$
- empirical loss is

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \min _{j=1, \ldots, k}\left\|x^{i}-\theta_{j}\right\|^{2}
$$

- this is the k-means objective function!
- we can use the k-means algorithm to (approximately) minimize $\mathcal{L}(\theta)$, i.e., fit a k-means model

K-means algorithm

- define the assignment or clustering vector $c \in \mathbf{R}^{n}$
- c_{i} is the cluster that data vector x^{i} is in (so $c_{i} \in\{1, \ldots, k\}$)
- to minimize

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \min _{j=1, \ldots, k}\left\|x^{i}-\theta_{j}\right\|^{2}
$$

we minimize $\frac{1}{n} \sum_{i=1}^{n}\left\|x^{i}-\theta_{c_{i}}\right\|^{2}$ over both c and $\theta_{1}, \ldots, \theta_{k}$

- we can minimize over c using $c_{i}=\operatorname{argmin}_{j}\left\|x^{i}-\theta_{j}\right\|^{2}$
- we can minimize over $\theta_{1}, \ldots, \theta_{k}$ using θ_{i} as the average of $\left\{x^{j} \mid c_{j}=i\right\}$
- k-means algorithm alternates between these two steps
- it is a heuristic for (approximately) minimizing $\mathcal{L}(\theta)$

K-means example

- 200 data points; reserve 40 for test

K-means example

- convergence after 4 iterations

K-means example

- fit k-mean data model for $k=1,2, \ldots, 50$
- validate by removing randomly either u_{1} or u_{2} from each record in test set

Revealing structure in data

Structure from a data model

- a data model can reveal structure of the data
- can be used for other purposes, some of them vague
- a good k-means model suggests that data come from k different 'modes' or 'regimes' or 'processes'
- examples:
- partition 5 sec mobile phone accelerometer data into different patterns (walking, sitting, running, biking, etc.)
- partition customer purchase data into market segments
- partition articles into different topics, authors

Features from a data model

- we can use a k-means data model to generate new features
- one-hot: map x to $\tilde{x}=e_{i}, i=\operatorname{argmin}_{j}\left\|x-\theta_{j}\right\|^{2}$
- soft version: map x to $\tilde{x} \in \mathbf{R}^{k}$, ($\sigma>0$ is a hyper-parameter)

$$
\tilde{x}_{i}=\frac{e^{-\left\|x-\theta_{i}\right\|^{2} / \sigma^{2}}}{e^{-\left\|x-\theta_{1}\right\|^{2} / \sigma^{2}}+\cdots+e^{-\left\|x-\theta_{k}\right\|^{2} / \sigma^{2}}}, \quad i=1, \ldots, k
$$

Missing entries in a data set

- we've so far assumed that there are no missing entries in the data set used to build the data model
- let's see how to handle the case when entries are missing
- first, standardize data using known entries
- replace missing entries with zeros
- build data model
- use data model to impute missing entries
- now build new data model, and repeat

Example: Missing entries in a data set

- blue points known, purple points have missing x coordinate, green points missing y coordinate, red points missing both

Recommendation system

- features are movies; examples are customer ratings
- entries are either rating (say, between 1 and 5) or ? if the customer did not rate that movie
- imputed entries are our guess of what rating the customer would give, if they rated that movie
- we can recommend movies to a customer for which the imputed entry is large

