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Generalization
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Generalization

I we would like to learn from a dataset

I would like learned properties to hold on unseen data

I generalization is the ability of a predictor to perform well on unseen data

I can be mathematically analyzed by making probabilistic assumptions, which
we won’t discuss in this course

I instead we’ll see some practical methods for assessing generalizability
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In-sample and out-of-sample data

I we construct a predictor based on training data or in-sample data

I we’d like it to work well on out-of-sample data

I if it doesn’t we say it fails to generalize
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Example: Vehicle-miles traveled
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I we train straight-line predictor using the 12 (in-sample) blue points, MSE
0:0047

I we use this to predict y for the 14 (out-of-sample) red points, MSE 0:0051

I so, this predictor generalizes
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Out-of-sample validation
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Out-of-sample validation

I a method to simulate how the predictor will perform on unseen data

I key idea: divide the data into two sets, train and test

I use the training set data to choose (‘train’) the predictor

I use the test set or validation set data to evaluate the predictor

I this is an honest simulation of how the predictor works on unseen data

I we hope that the predictor will work in a similar way on new unseen data

I this hope founded on the assumption that future data ‘looks like’ test data
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Out-of-sample validation

I the test set error (empirical risk on test data set) is what matters

I the training set error (empirical risk on training data set) does not matter

I selection of data for the training/test sets is often random
(80/20 or 90/10 are common splits)

I we expect the test error to be a little bigger than the training error

I if the test error is much greater than training error, the predictor is overfit
(but if the test error is acceptable, this can still be useful)
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Interpreting validation results

small training error large training error

small test error generalizes, performs well possible (luck, or fraud?)

large test error fails to generalize generalizes, but performs poorly
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Choosing a predictor
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Choosing among candidate predictors

I validation is a good method to choose among candidate predictors

I typically we choose predictor among candidates with smallest test error

I in some cases, might accept a bit larger test error in favor of a ‘simpler’
predictor
(more on this later)
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Example: Diabetes
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I 10 explanatory variables (age, bmi,. . . )

I data from 442 individuals

I use half for training, half for validation (50-50 split)
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Example: Diabetes

features train loss test loss
all 2640 3224
S5 and BMI 3004 3453
S5 3869 4227
BMI 3540 4277
S4 and S3 4251 5302
S4 4278 5409
S3 4607 5419
none 5524 6352

I test loss gives a method of selecting features

I data indicates that using only 2 features, S5 and BMI, would predict diabetes
almost as well as using all 10 features

I combining S4 and S3 doesn’t buy much; combining S5 and BMI much better
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Overfitting
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Overfitting

I we have a family of predictors

I we might choose a predictor that fits the training data very closely

I but often this leads to poorly fitting the test data

I called overfitting
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Example: Polynomial fit

I raw data is scalar u 2 R

I we use polynomial features

x = �(u) =

2
66664
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77775

and linear predictor g(x) = �Tx

I predictor is polynomial of u of degree d� 1:

ŷ = g(x) = �1 + �2u+ � � �+ �du
d�1

I choose � by ERM with square loss lsqr(ŷ; y) = (ŷ � y)2

16



Example: Polynomial fit

degree 5 degree 11 degree 13

I n = 60 data points

I predictor for d = 6, d = 12, d = 14
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Choosing degree by validation
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I split 60 data points into 48 train and 12 test points

I plot suggests best choice of degree is 5

I can now use degree 5 fit on all data
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Cross validation
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Cross validation

I an extension of out-of-sample validation

I divide the data into k folds

I for each i, fit predictor on all data but fold i

I evaluate predictor on fold i

I use average test error, across the folds, to judge the method

I can give some idea of the variability of the test error

I can assess stability of the modeling method by looking at predictor parameters
found in each fold (are they similar? very different?)
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Example: Cross validation

50 data points, artificial data
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fold training loss test loss �1 �2

1 0.028 0.030 �0:016810 0:9874

2 0.026 0.036 0:005917 0:9822

3 0.030 0.023 0:008961 1:0010

4 0.028 0.031 0:004135 0:9859

5 0.028 0.029 0:000844 0:9742
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And to be even more confident . . .

I split data into train:test (say, 80:20) randomly

I develop predictor from training data

I evaluate on test data

I repeat above for many different random splits into train:test

I look at histogram of test errors to judge the method

I called repeated train/validation
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Example: Repeated train/validation
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I 1000 experiments

I diabetes data, with BMI and S5 features

I mean loss: 3258
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