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Traveling Salesman Problems (TSP) have been widely introduced for solving path planning or trajectory design problems. A
typical TSP is described as follows; 1) a salesman is required to visit n cities with the shortest path and return to the place from which
he left initially, and 2) each city must be visited only once. However, in fact, the TSPs are not limited to the problems of finding
the shortest path of a whole travel, but it can be regarded as finding the safest travel that minimizes the integral of the risk function
along the path. Hence the TSPs are extensively applied to mission planning or mission assignment problems in the field of robotics or
aerospace systems.

There has been an extensive line of research works for solving the Integer Linear Programming problems into which the TSPs
can be formulated. Popular examples include heuristic suboptimal approaches such as the greedy algorithms, the genetic algorithms,
and the ant colony optimization algorithms, or more rigorous optimization-based approaches such as the convex relaxation via the
semidefinite programming, or the branch-and-bound methods. In this paper, we reformulated the TSP as a Mixed Integer Linear
Programming problem and applied the Alternating Direction Method of Multipliers (ADMM) on it. The ADMM, a kind of dual ascent
methods, defines the augmented Lagrangian for strong convexity and achieve the fast convergence by coordinate-wisely minimizing
the augmented Lagrangian. The main idea of the proposed method efficiently handling the integer constraints is as follows: the
nonconvex integer constraints regarding the decision variable can be expressed as the set inclusion problem that the columns of the
decision variable being included in the set of the unit vectors, and the proximal optimization step in the ADMM procedures can easily
handle the set inclusion problem by computing the projection onto the finite set of the unit vectors. We also introduced a set of
nonnegative slack variables to transform the inequality constraints of the Miller-Tucker-Zemlin (MTZ) formulation, for guaranteeing
the connectivity of the travel, into equality constraints that can be efficiently handled. The convergence of the proposed method is
investigated via computing the primal residuals and the dual residuals.

The performance of the proposed algorithm is verified via a series of numerical simulations on several well-known TSP examples.
Sensitivity of the penalty parameters of the augmented Lagrangian term as well as the scalability of the proposed approach are
investigated on a series of the numerical examples with different problem sized.
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Nomenclature

N : the number of cities
N : set of all cities {0, 1, . . . ,N − 1}
E : set of unit vectors
S : set of matrices whose elements are

between 0 and 1
R : real space
Z : integer space
◦ : Hadamard product
⊗ : Kronecker product
{0} : depot

1. Introduction

The Traveling Salesman Problem (TSP) is a combinatorial
optimization problem of finding the shortest path for a sales-
man visiting all cities defined in a problem only once. Actually,
the shortest path objective can be replaced by other meaningful
criteria. Especially, for example in the field of aerospace engi-
neering, when a UAV finds a route to spy on the enemy area,
the cities can be replaced by the waypoints and the objective
function can be the integral risk function modeled from the risk

contour of enemy SAM sites.
The TSP is known as NP-hard, and there’s no specific solu-

tion that solves it in polynomial time. But there have been a lot
of studies that solve the optimal route of the problem. Deter-
ministic algorithms, such as branch-and-bound, dynamic pro-
gramming and cutting plane techniques, give exact solutions
and they can deal with all TSP instances. But these are highly
inefficient for some instances, so non-deterministic methods
can be more useful giving approximate solutions.1) Because
open-source solvers dealing with combinatorial optimization
problems have used state-space search methods which ineffi-
ciency gives unfitness for implementation, an implemented al-
gorithm is presented in this paper.

ADMM2) is an optimization method which solves the prob-
lems with a composite objective function. The ADMM is a dual
ascent method, but it can be apart from it by introducing an aug-
mented term which formulates the augmented Lagrangian and
presents strong convexity that ensures faster convergence rate.
Also, its proximal approach to the additional objectives is ap-
propriate for implementation on parallel computing. In this pa-
per, we relaxed the ILP to a mixed integer linear programming
(MILP), and used the ADMM to solve it. A similar example
was presented by Ref. 3), however the method is unsuitable



for expanding the approach to the multi-agent TSP (mTSP) in
the future because the solution of the mTSP is not in the set of
Hamiltonian cycle. Our approach can be efficiently expanded to
handle the mTSP by adopting LP relaxation to each salesman.

2. Taveling Salesman Problem as MILP

The TSP for N cities can be formulated as a integer linear
programming (ILP) as follows.

minimize trace
(
CT X

)
subject to 1T X = 1T , 1T XT = 1T

ui − u j + 1 ≤ N
(
1 − Xi, j

)
i, j ∈ N\{0}, i , j

0 ≤ Xi, j ≤ 1, i, j ∈ N

where X ∈ ZN×N , u ∈ ZN

(1)
In the above problem, X is the decision variable where the (i, j)
entry implying the existence of the path from city i to city j.
The first constraint of the above problem means that the sales-
man should visit all cities once. The second line is the formu-
lation of subtour elimination constraints called MTZ formula-
tion.4) When Xi, j is equal to 1, the constraint for the path from
city i to j becomes active, which means discontinuity of the
route is not allowed. The other one is a valid constraint added
for faster convergence.

To reformulate the TSP as a MILP, all variables are set as the
real matrices or vectors, and rows of X must be in the set of
unit vectors E. Also, we introduced a slack variable Γ to the
MTZ constraints to convert the inequalites to equalities for the
ADMM. Then,

minimize trace
(
CT X

)
subject to 1T X = 1T

(Z1)i ∈ E, i ∈ N
Z2 ∈ S

N(Z1)i, j + ui − u j + Γi, j + 1 − N = 0
i, j ∈ N\{0}, i , j

X − Z1 = 0, X − Z2 = 0, Γ ≥ 0,

where X,Z1,Z2,Γ ∈ R
N×N , u ∈ RN .

(2)
In the above equation, Z1 and Z2 are the variables that should be
inside the set formed by inequalities in Prob. (1). Generally, the
decision variable in equality constraints is not usually replaced
by a new variable, but it is converted to Z1 in this research.

3. NC-ADMM

Prob. (2) can be simplified as a set inclusion problem as fol-
lows.

minimize f (x)
subject to Ax + Bz + c = 0

z ∈ C,
(3)

where the last line is the set inclusion constraint, and the set C
can be either convex or nonconvex.

minimize f (x) + IC(z)
subject to Ax + Bz + c = 0

(4)

In Prob. (4), IC is the indicator function defined as

IC(x) =
{

0 if x ∈ C
∞ otherwise

(5)

Then, the augmented Lagrangian of Prob. (2) is defined as fol-
lows.

Lρ(X,Z1,Z2, u,Γ,W1,W2,R, y) = trace(CT X)

+
ρ1

2

(
∥X − Z1∥

2
F + ∥X − Z2∥

2
F

)
+
ρ2

2
∥1T X − 1T ∥2F

+
ρ3

2

∑
i∈N\{0}

∑
j∈N\{0}

{
N(Z1)i, j + ui − u j + Γi, j + 1 − N

}2

i< j

+W1(X − Z1) +W2(X − Z2) + (1T X − 1T )y

+
∑

i∈N\{0}

∑
j∈N\{0}

Ri, j

{
N(Z1)i, j + ui − u j + Γi, j + 1 − N

}
i, j

+
∑
i∈N

IE(Z1)i + IS(Z2) + IR+ (Γ)

(6)
In the general formulation of the augmented Lagrangian, single
penalty parameter ρ is used for the augmented term. However,
with the same penalty for all constraints, some constraints may
not be satisfied because the level of residual for each constraint
may not be quite different. For example, assuming a TSP with
10 cities, u should activate with the range of (−5, 5) or (0, 9), but
X still operates with the range of (0, 1). This would makes the
first and the last constraint of Prob. (2) unsatisfied if the same
penalty is used for them. So, multiple penalties were considered
to formulate the Lagrangian, and the pareto optimal solutions
were found.

The ADMM iteration can be derived from calculating a
solution that the gradient of the augmented Lagrangian for
each variable is equal to zero. The following statement tells the
procedure of it.

X-update:

The gradient of X for Eq. (6) is

∇XLρ =C + ρ1

2X −
2∑

i=1

Zi


+ ρ2(11T X − 11T ) +

2∑
i=1

Wi + 1 ⊗ yT ,

(7)

and the solution that Eq. (7) is equal to zeros is

X = − (2ρ1I + ρ211T )−1C − ρ1

2∑
i=1

Zi − ρ211T +

2∑
i=1

Wi + 1 ⊗ yT

 . (8)

Z-update:



Deriving the Z-update step should be separated for Z1 and Z2

because Z1 is related to MTZ constraints. Then, first of all, the
gradient of Z1 is expressed as follows.

∇Z1Lρ =ρ1(−X + Z1) + ∂IE(Z1)

+ ρ3NF ◦
(
NZ1 + U + Γ + 1 − N +

1
ρ3

R
)
,

(9)

where

U = 1 ⊗ uT − 1T ⊗ u

Fi, j =

{
0 i, j ∈ N\{0}, i , j
1 otherwise

.
(10)

From Prob. (2), the MTZ formulation doesn’t count of self-
loops and a depot, but we counted them as assuming these are
inactive and introduced F to be not updated over the iterations.
This makes the implementation process easier with trading off
memory capacity because all variables can be defined as the
same size of matrices with the decision variable except for u
and y. Back to the point, the solution is

z1 = −
[
ρ1I + ρ3N2diag{vec(F)}

]−1

vec
{
−ρ1X −W1 + ρ3NF ◦

(
U + Γ + 1 − N +

1
ρ3

R
)}
,

(11)
where z1 = vec(Z1). Note that the subgradient of the indica-
tor is not considered in the above, but it is implemented as a
subgradient projection step after turning back z1 to Z1 as follow
as

(Z1)i ← PE{(Z1)i}. (12)

PE is the projector on the nonconvex set E, and the projection
procedure is

PE(v) = ei, i = argmax{v1, . . . , vN}. (13)

where ei is the i-th unit vector in RN . Then, the update step for
Z2 is very simple as

Z2 ← PS
(
X +

1
ρ1

W2

)
,

where PS(V) =

W

∣∣∣∣∣∣ Wi, j = 0, Vi, j ≤ 0
Wi, j = Vi, j, otherwise
Wi, j = 1, Vi, j ≥ 1

 .
(14)

Note that V and W are the N × N matrices.

u-update:

The gradient of u is simply divided to the parallel steps for
updating each entry of u. Then,

∇uiLρ =ρ3

Nh(Z1, i) + 2(N − 1)ui − 2
∑

j∈\{0,i}

u j + h(Γ, i)


+ h(R, i)

where h(X, i) =
∑

j∈\{0,i}

{
(F ◦ X)i, j − (F ◦ XT )i, j

}
,

(15)

and the solution of ∇uiLρ = 0 is the update step of ui as shown
in the following expression,

ui = −
1

2(N − 1)
·Nh(Z1, i) − 2

∑
j∈\{0,i}

u j + h(Γ, i) −
1
ρ3

h(R, i)

 .
(16)

Γ-update:

The last step for Γ is derived as follows.

∇ΓLρ =ρ3F ◦
(
NZ1 + U + Γ + 1 − N +

1
ρ3

R
)
+ ∂IR+ (Γ)

Γ =PR+

{
−F ◦

(
NZ1 + U + 1 − N +

1
ρ3

R
)}
,

where PR+ (V) =
{

W

∣∣∣∣∣∣ Wi, j = 0, Vi, j ≤ 0
Wi, j = Vi, j, otherwise

}
.

(17)
Also, note that V and W are the N × N matrices.

Dual-ascent:

Updating the dual variables is the same as that of the dual
ascent method, so

Wi ← Wi + ρ1(X − Zi), for i = 1, 2
R ← F ◦ {R + ρ3(NZ1 + U + Γ + 1 − N)}

y ← y + ρ2(XT 1 − 1).
(18)

Primal-dual residuals:

We can find the solution from the ADMM iteration as stated
above, but it’s hard to check if it converges to a saddle point
by tracking the objective trace(CT X). Actually, since the
augmented Lagrangian embraces the penalties of constraints,
primal-dual residuals were observed over the iterations.

rk+1
1 = Xk+1 − Zk+1

1

rk+1
2 = Xk+1 − Zk+1

2

rk+1
3 = F ◦ (NZk+l + Uk+1 + Γk+1 + 1 − N)

rk+1
4 = 1T Xk+1 − 1T

rk+1 =
[
vec(rk+1

1 )T vec(rk+1
2 )T vec(rk+1

3 )T rk+1
4

]T

sk+1 = −ρ1

2∑
i=1

(Zk+1
i − Zk+1

i )

(19)

From the above equations, the superscript k implies the current
iteration number. And ri and s are the primal residual of each
constraint and the dual residual respectively. Also, dual feasi-
bility for Xk+1 is represented as

C +
2∑

i=1

Wk+1
i + 1 ⊗ yT . (20)

As stated above, we dropped the dual residuals for the other
variables except Z1, since subgradients of the indicators cancel
out the other terms of gradients of the dual ascent form. So,
they are ignored in this paper.



By summing up all processes stated above, the proposed al-
gorithm is organized as a pseudo code in a tabular form as fol-
lows. Note that all variables are updated simultaneously as each
step is done like the Gauss-Seidel method. Also, the iteration
terminates when the primal-dual residuals are small enough.

Algorithm 1 NC-ADMM based method for TSP
Require: C

1: Declaration X0,Z0
1 ,Z

0
2 , u

0,Γ0,W0
1 ,W

0
2 ,R

0, y0, r0, s0

2: Initialization k = 0
3: while ∥rk∥ ≥ 1e − 3 or ∥sk∥F ≥ 1e − 1 do
4: Xk+1 ← (8)
5: Zk+1

1 ← (11), (12)
6: Zk+1

2 ← (14)
7: uk+1

i ← (16) for i = 1, 2, · · · ,N
8: Γk+1 ← (17)
9: Wk+1

1 ,W
k+1
2 ,R

k+1, yk+1 ← (18)
10: rk+1, sk+1 ← (19)
11: k ← k + 1
12: end while

4. Numerical Experiments

4.1. Symmetric Examples
We first solved a famous 5-city problem4) where the cost ma-

trix is represented in Table 1. The diagonal entries are not de-
fined here, but we filled the entries with summation of the other
entries, since the self-loops should not be selected. The cost
matrix is divided by the maximum number of all entries before
the beginning of the iteration, as a measure of normalization,
since the algorithm is sensitive to the penalties.

Table 1. Cost matrix of the 5-city problem.

- 3 4 2 7
3 - 4 6 3
4 4 - 5 8
2 6 5 - 6
7 3 8 6 -

Table 2 is a result of the proposed method with ρ1 = 1, ρ2 = 1,
and ρ3 = 0.1. The result is identified as the optimal solu-
tion by comparing to the same result of an open-source solver
(CVXPY-GLPK) using the branch-and-bound method.

Table 2. Result of the 5-city problem.

0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

Figure 1 shows the trend of primal-dual residuals over the iter-
ations. From Figure 1, dual feasibility is valid showing that it’s
the same with dual residual. Figure 2 displays that the resid-
ual for violating the MTZ constraints is quite smaller than the
other residuals, even ρ3 is only 10% of ρ1 and ρ2. If the same
penalties are used, the other constraints except the subtour elim-
ination condition will not be satisfied through the iterations.

Fig. 1. Primal-dual residuals and dual feasibility through the iterations.

Fig. 2. Residuals for all constraints through the iterations.

The second experiment expands to the Barachet’s 10-city
problem.5) With ρ1 = 0.0885, ρ2 = 0.0885, and ρ3 = 0.00885,
the result and its convergence trend are displayed in Table 3
and Fig. 3, and these are verified with the same manner of the
previous example.

Table 3. Result of the Barachet’s 10-city problem.

1
1

1
1

1
1

1
1

1
1

Fig. 3. Convergence trend for the 10-city problem.



4.2. Asymmetric Example
An experiment for the asymmetric case is also conducted.

A random integer matrix is generated for the experiment and
Table 4 is the cost matrix of the example. The optimal solution
is represented in Table 5 and the algorithm converges through
the iterations as shown in Fig. 4.

Table 4. Cost matrix of the asymmetric example.

- 16 38 99 9 75 75 27 10 7
76 - 83 40 97 96 31 95 11 25
48 36 - 90 46 69 11 24 7 84
35 40 31 - 71 81 72 7 15 56
5 98 98 99 - 16 35 31 76 56
33 29 96 51 67 - 76 41 5 63
48 69 24 63 50 88 - 66 14 34
57 48 92 37 24 52 74 - 11 70
41 89 41 49 58 83 9 91 - 24
42 35 67 49 48 40 32 55 63 -

Table 5. Result of the asymmetric example.

1
1

1
1

1
1

1
1

1
1

Fig. 4. Convergence trend for the asymmetric example.

5. Conclusion

In this paper, we presented an approach to solve the TSP via
the ADMM. The nonconvex constraints appearing in the refor-
mulation process can be handled by projecting onto the non-
convex set. The proposed method is validated by solving the
symmetric and asymmetric examples. In the ADMM iteration
for TSP, there are very few of matrix multiplications. Even the
updating X and Z1 is the most complicated step in the algo-
rithm, the inverse matrices are very simple and any additional
algorithms to solve linear systems are not required. Also, the

algorithm is highly parallelized for easy implementation on em-
bedded computers, which expands the range of applications on
engineering fields.

As a future work, the TSP for multiple salesman which is
more practical in engineering problems will be considered. For
the multiple TSPs (mTSPs), the analysis of the penalties should
be extensively demanded because constraints of the multiple
agent case is way more complicated. Due to the difficulties for
deciding the best penalties, finding the suboptimal solutions can
be considered with trading off the performances.
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