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Abstract—We consider the optimal guidance problems for
exoatmospheric vehicles with large divert maneuvers. The large
divert impact angle guidance problem was formulated as a
nonconvex optimization problem with constraints on the angles
between the control vectors and the line-of-sight vectors, and the
problem was efficiently solved via first-order methods. A series
of numerical simulations against high-speed targets shows that
the proposed approach can be successful for a wider range of
engagement scenarios compared to the classical impact angle
guidance solutions.

Index Terms—Ilarge divert guidance, exoatmospheric vehicles,
nonconvex optimization, first order methods

I. INTRODUCTION

Exoatmospheric kill vehicles (KV) with divert attitude con-
trol systems are popularly used for ballistic missile defense
systems. Since the relative velocity between the KV and target
is in general very large, forming the head-on interception
geometries at the terminal stage is preferable. However, the
classical impact angle guidance (IAG) typically requires large
acceleration maneuver due to the drastic increase in line-of-
sight (LOS) rate in the proximity of the impact, which results
in the increase of interception error.

In this paper, a computational guidance approach taking
account for these issues is proposed. Rather than formulating
the optimal IAG problem via linearization, we directly handle
the nonconvex constraints and formulate the optimization
problem without linearization. The problem can be efficiently
solved via first-order optimization methods. The guidance
performance of the proposed approach is compared with that
of the classical IAG [1] via a series of numerical simulations.

II. PROPOSED GUIDANCE LAW

A. Problem Formulation

We assume that the KV in this problem has the following
characteristics:

o KV’s body-1 axis is always aligned to the LOS vector.
o The divert thrust is perpendicular to the LOS vector.
o The magnitude of the divert thrust is limited.
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In other words, KV’s attitude control loop is assumed to track
the LOS vector so that the target is always visible, and the
divert thrust is always perpendicular to the LOS vector.

The IAG for large divert maneuver with the above con-
straints can be formulated as the following nonconvex opti-
mization problem:

minimize 370" |ug||*
subject to ;11 = x¢ + Atvy + 0.5A%u,,
V1 = U + Atuy, 0
Yt = po + Atwot — x4,
yr =0,
[[ue]| < b,

Z’UT = Hf,
ul y; = 0.

Here, T is the horizon size and At is the sampling interval.
The decision variable wu;, z; and v, are the KV’s control input,
position and velocity vectors, respectively. Also, pg and wy
represent the target’s initial position and velocity, and y; is
the K'V-to-target LOS vector. The maximum available control
is given by uy,. Each constraint represents the KV’s dynamics,
the LOS vector to the target, interception condition, rhe desired
course angle at the predicted impact point, control size limit,
and the angle between u; and y;.

B. First-order optimization on nonconvex problems

We apply the alternating direction method of multipliers
(ADMM) to solve the above nonconvex optimization. The
above problem is formulated in the standard ADMM form
[2] as below:

minimize ||u||*+Ic, (w) + Ic, (2)
subject to Pu+q =0, 2)
Gu+ h = z,

w = u.

where w is the stack of the control input history, P, ¢, G and h
are matrices that relate the dynamics and the course of the KV,
and the LOS vector from the KV to the target as well as the
desired terminal constraints. The second and third equalities
are incorporated to handle the constraints on control vectors,
and the constraints on the angle between the control vectors
and the LOS vectors. Additional objective terms, I¢, (-) and
I, (+), are the indicator functions that handle the last two
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Fig. 1. Projection onto the nonconvex set C2 = M¢ {(ut, yt) \ u?yt = 0}.

constraint sets in the problem (1), C; = Ny {ut | [Jue]] < uub},
and Co =Ny {(ut,yt) | ul'y; = 0}.

Obtaining the solution via the ADMM approach boils
down to computing the orthogonal projection of intermediate
variables onto the set C; and Cs. The intuition behind directly
solving the nonconvex problem via the same approach is that
the projections onto C; and Cq are easily computable even
though C5 is nonconvex [3].

Projection onto the first (convex) set C; is simple: if the
argument is outside the ball, it shrinks to the surface.

However, computing the orthogonal projection onto the
second (nonconvex) set, Co, is rather complicated. Fig. 1
displays how the projection on Co works. Let ¢ be the angle
between u; + r,, and y; + r,,, which are the intermediate
control input and LOS vector, respectively. Then the angle v
is chosen so that the distance between u; + 7, and z,, and
the distance between y; + 1y, and z,, are equal. If angle ¢ is
greater than 90 degrees, u; + ry, and y; + r,, are projected
onto Cparow, While both vectors are projected onto Cyige When
¢ is smaller than 90 degrees.

Once these projections are obtained, the standard ADMM
update steps to converge the problem can be followed.

ITI. SIMULATION RESULTS

The proposed approach was analyzed by a set of numerical
simulations on a variety of engagement instances shown in
Fig. 2. Initial conditions of the KV are given by zg = (0, O),
vy = (0, 10) and u,, = 8. The target is initially at d = 100
units apart along the range direction with the cross-track
distance X varying from 20 to 40, and approaches along
the course angle n varying from 255 degrees to 285 degrees.
The minimum time solution for the problem was searched via

Fig. 2. Engagement geometry.
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Fig. 3. Engagement trajectories of the proposed guidance law and the IAG.
The arrows display the size and the direction of the maneuver accelerations.
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Fig. 4. Maneuver accelerations and course angles.

bisection on 7', and Fig. 3 and Fig. 4 display in detail the
simulation results from an engagement instance with X = 40
and n = 255 degrees, where the IAG fails to achieve the
desired impact angle 6 due to the acceleration divergence.

IV. CONCLUSION

A nonconvex formulation of the large divert guidance
problem was introduced and it was efficiently solved via the
first-order optimization method. Numerical analysis on the
guidance performance indicated that the proposed approach
can be effective for a wider range of engagement scenarios
compared to that of the conventional approaches.

REFERENCES

[1] S. N. Balakrishnan, A. Tsourdos, and B. A. White, Advances in missile
guidance, control, and estimation. CRC Press, 2016.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2011.

[3] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, pp. 29-63, 2019.



