ASE2010 Applied linear algebra: Homework #1

- 1) Linear functions.
 - a) Show that an inner product function, $f(x) = a^T x$, is linear.
 - b) Show that any scalar-valued linear function f(x) satisfying superposition can be expressed as an inner product function, say $f(x) = a^T x$. Explicitly state the elements of a in terms of f.
- 2) Affine functions.
 - a) Show that an inner product function plus a shift, $f(x) = a^T x + b$, is affine.
 - b) Show that any scalar-valued affine function f(x) satisfying the restricted superposition (superposition defined for linear combination with coefficients that sum to 1) can be expressed as an inner product function plus a shift, say $f(x) = a^T x + b$. Explicitly state the elements of a and b in terms of f.
- 3) Cauchy-Schwarz inequality. Show that any two vectors $a, b \in \mathbb{R}^n$ satisfy the following. Also state the condition under which the inequality is tight.

$$|a^T b| \le ||a|| ||b||.$$

4) Angle between two vectors. Show that any two vectors $a, b \in \mathbb{R}^n$ satisfy the following, where θ is the angle between a and b. You may provide a proof for the two-dimension case, which easily generalizes to general *n*-dimension cases.

$$a^T b = \|a\| \|b\| \cos \theta.$$

- 5) Parallelogram. Draw two different vectors u and v out from the origin. Complete two more sides to make a parallelogram with diagonals w = u + v and z = u v. Show that $||w||^2 + ||z||^2 = 2||u||^2 + 2||v||^2$.
- 6) VMLS Exercises.
 - a) **2.3** Motion of a mass in response to applied force.
 - b) **2.12** Price change to maximize profit.
 - c) **3.12** Nearest point to a line.