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Introduction 1

Kinematic relationships are used to 
help us determine the trajectory of a 
snowboarder completing a jump, 
the orbital speed of a satellite, and 
accelerations during acrobatic 
flying.
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Introduction 2

• Dynamics includes:

Kinematics: study of the geometry of motion. 

Relates displacement, velocity, acceleration, and time without reference 
to the cause of motion.

Kinetics: study of the relations existing between the forces acting on 
a body, the mass of the body, and the motion of the body. Kinetics is 
used to predict the motion caused by given forces or to determine the 
forces required to produce a given motion.

© Glow Images RF
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Introduction 3

• Particle kinetics includes:

• Rectilinear motion: position, velocity, and acceleration of a 
particle as it moves along a straight line.

• Curvilinear motion: position, velocity, and acceleration of a 
particle as it moves along a curved line in two or three 
dimensions.

© Tony Hertz/ Alamy
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Rectilinear Motion: Position, Velocity & 
Acceleration 1

• Rectilinear motion: particle moving 
along a straight line

• Position coordinate: defined by 
positive or negative distance from a 
fixed origin on the line.

• The motion of a particle is known if 
the position coordinate for particle is 
known for every value of time t. 

• May be expressed in the form of a 
function, e.g., 326 ttx 

or in the form of a graph x vs. t.
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Rectilinear Motion: Position, Velocity & 
Acceleration 2

Consider particle which occupies position P
at time t and 'at ,P t t
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Rectilinear Motion: Position, Velocity & 
Acceleration 3

• Consider particle with velocity v at time t and
'at ,v t t 

0
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Instantaneous acceleration may be:

• positive: increasing positive velocity

or decreasing negative velocity

• negative: decreasing positive velocity

or increasing negative velocity.

• From the definition of a derivative,
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Concept Quiz 1

What is true about the kinematics of a particle?

a) The velocity of a particle is always positive

b) The velocity of a particle is equal to the slope of the 
position-time graph

c) If the position of a particle is zero, then the velocity 
must zero

d) If the velocity of a particle is zero, then its 
acceleration must be zero
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Concept Quiz 2

What is true about the kinematics of a particle?

a) The velocity of a particle is always positive

b) Answer: The velocity of a particle is equal to the 
slope of the position-time graph

c) If the position of a particle is zero, then the velocity 
must zero

d) If the velocity of a particle is zero, then its 
acceleration must be zero
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Rectilinear Motion: Position, Velocity & 
Acceleration
• From our example,

326 ttx 

2312 tt
dt

dx
v 

t
dt

xd

dt

dv
a 612

2

2


• What are x, v, and a at t = 2s?

at t = 2 s, x = 16 m, v = vmax = 12 m/s, a = 0

• Note that vmax occurs when a = 0, and that the 
slope of the velocity curve is zero at this point.

What are x, v, and a at t = 4s?

• at t = 4 s, x = xmax = 32 m, v = 0, a = −12 2m/s
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Determining the Motion of a Particle

We often determine accelerations from the forces applied 
(kinetics will be covered later)

Generally have three classes of motion

• acceleration given as a function of time, a = f(t).

• acceleration given as a function of position, a = f(x).

• acceleration given as a function of velocity, a = f(v).

Can you think of a physical example of when force is a 
function of position?

A Spring

When force is a function of velocity?

Drag
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Acceleration as a function of time, 
position, or velocity
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Sample Problem 11.2 1

Ball tossed with 10 m/s vertical velocity 
from window 20 m above ground. 

Determine:
• velocity and elevation above 

ground at time t,
• highest elevation reached by ball 

and corresponding time, and 
• time when ball will hit the ground 

and corresponding velocity.

Strategy:

• Acceleration is constant, so we can 
directly integrate twice to find v(t) and 
y(t).

• Solve for t when velocity equals zero 
(time for maximum elevation) and 
evaluate corresponding altitude.

• Solve for t when altitude equals zero 
(time for ground impact) and evaluate 
corresponding velocity.
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Sample Problem 11.2 2

Modeling and Analysis:

• Integrate twice to find v(t) and y(t).

 
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Sample Problem 11.2 3

• To find the highest elevation reached, first solve for t
when velocity equals zero.
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• Now evaluate the altitude at the time corresponding to 
zero vertical velocity.
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Sample Problem 11.2 4

• To find the velocity when the ball hits the 
ground, first solve for t when altitude equals 
zero, and then evaluate the velocity at that time.
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Reflect and Think:
When the acceleration is constant, the velocity
changes linearly, and the position is a quadratic function of time. 
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Sample Problem 11.3 1

a = −kv

A mountain bike shock mechanism 
used to provide shock absorption 
consists of a piston that travels in an 
oil-filled cylinder. As the cylinder is 
given an initial velocity v0, the piston 
moves and oil is forced through 
orifices in piston, causing piston and 
cylinder to decelerate at rate 
proportional to their velocity. 
Determine v(t), x(t), and v(x).

Strategy:
• Which equation we integrate 

depends on the independent 
variable of what we wish to 
calculate: to find functions of 
time we integrate / ,a dv dt
while to find functions of 
position we integrate  /a v dv dx

• Integrate  /  to find .a dv dt kv v t  

• Integrate    /  to find .v t dx dt x t

• Integrate   /  to find .a v dv dx kv v x  
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Sample Problem 11.3 2

Modeling and Analysis:

• Integrate  /  to find .a dv dt kv v t  
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Sample Problem 11.3 3

• Integrate   /  to find .a v dv dx kv v x  

kxvv

dxkdvdxkdvkv
dx
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Sample Problem 11.3 4

Reflect and Think: 

You could have solved part c by eliminating t from the answers obtained for parts 
a and b. You could use this alternative method as a check. From part a, you 
obtain 0/kte v v  ; substituting into the answer of part b, you have:

 0 0

0

1 1ktv v v
x e

k k v
  

    
 

v=v0−kx (checks)
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Group Problem Solving 1

A bowling ball is dropped from a boat so that it 
strikes the surface of a lake with a speed of 8 m/s. 
Assuming the ball experiences a downward 
acceleration of a = 3 - 0.1v2 when in the water, 
determine the velocity of the ball when it strikes the 
bottom of the lake. (a and v expressed in m/s2 and 
m/s respectively)

Which integral should you choose?

 
0 0

v t

v

dv a t dt   
0 0

v x

v x

v dv a x dx 
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0 0

v t

v

dv
dt

a v
 

 
0 0

x v

x v

v dv
dx

a v
 

(a)

(b)

(c)

(d)
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Concept Question

When will the bowling ball start slowing down?

A bowling ball is dropped from a boat so that it 
strikes the surface of a lake with a speed of 8 m/s. 
Assuming the ball experiences a downward 
acceleration of a = 3 - 0.1v2 when in the water, 
determine the velocity of the ball when it strikes the 
bottom of the lake.

The velocity would have to be high 
enough for the 0.1 v2 term to be bigger 
than 3.

+y
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Group Problem Solving 3

The car starts from rest and accelerates 
according to the relationship

23 0.001a v 

It travels around a circular track that has 
a radius of 200 meters. Calculate the 
velocity of the car after it has travelled 
halfway around the track. What is the 
car’s maximum possible speed?

Strategy:

• Determine the proper kinematic 
relationship to apply (is 
acceleration a function of time, 
velocity, or position?

• Determine the total distance the car 
travels in one-half lap

• Integrate to determine the velocity 
after one-half lap
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Group Problem Solving 4

Given: 23 0.001a v 

0 0 200mv = ,r

Find: v after 1
2 lap

Maximum speed

Modeling and Analysis:

Choose the proper kinematic relationship
Acceleration is a function of velocity, and 
we also can determine distance. Time is not 
involved in the problem, so we choose:

 dv
v a v

dx


 
0 0

x v

x v

v dv
dx

a v
 

Determine total distance travelled

3.14(200) 628.32 m  x r
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Group Problem Solving 5

Determine the full integral, including limits

 
0 0

x v

x v

v dv
dx

a v
 

628.32

2
0 0 3 0.001

v v
dx dv

v


 

Evaluate the interval and solve for v

2

0

1
628.32 ln 3 0.001

0.002

v
v    

 2628.32( 0.002) ln 3 0.001 ln 3 0.001(0)v      

2ln 3 0.001 1.2566 1.0986= 0.15802v      

Take the exponential of each side 2 0.158023 0.001v e 
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Group Problem Solving 6

Solve for v 2 0.158023 0.001v e 

0.15802
2 3

2146.2
0.001

e
v


  46.3268 m/sv 

How do you determine the maximum speed the car can reach?

Velocity is a maximum when 
acceleration is zero

23 0.001a v 

This occurs when 20.001 3v 

3
0.001maxv  max 54.772 m/sv 
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Group Problem Solving 7

Reflect and Think: 

The units for the solution are correct. You can also 
review the answers from the two parts. The 
maximum speed (part b) should be greater than the 
speed found for part a.

By inspection, the answers are reasonable.
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Uniform Rectilinear Motion

Once a safe speed of descent for a 
vertical landing is reached, a Harrier jet 
pilot will adjust the vertical thrusters to 
equal the weight of the aircraft. The 
plane then travels at a constant velocity 
downward. If motion is in a straight 
line, this is uniform rectilinear motion.

For a particle in uniform 
rectilinear motion, the 
acceleration is zero and the 
velocity is constant.

vtxx

vtxx

dtvdx

v
dt

dx

tx

x










0

0

00

constant

Careful – these only apply to 
uniform rectilinear motion!
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Uniformly Accelerated Rectilinear 
Motion

For a particle in uniformly accelerated rectilinear motion, the 
acceleration of the particle is constant. You may recognize these 
constant acceleration equations from your physics courses.

0

0

0

constant
v t

v

dv
a dv a dt v v at

dt
     

 
0

21
0 0 0 0 2

0

x t

x

dx
v at dx v at dt x x v t at

dt
       

 
0 0

2 2
0 0constant 2

v x

v x

dv
v a v dv a dx v v a x x

dx
      

Careful – these only apply to uniformly accelerated rectilinear motion!
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Motion of Several Particles
We may be interested in the motion of several different particles, 
whose motion may be independent or linked together. 
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Motion of Several Particles: Relative 
Motion

• For particles moving along the same line, time 
should be recorded from the same starting 
instant and displacements should be measured 
from the same origin in the same direction.

 ABAB xxx

ABAB xxx 
relative position of B
with respect to A

 ABAB vvv

ABAB vvv 
relative velocity of B
with respect to A

 ABAB aaa

ABAB aaa 

relative acceleration of B
with respect to A
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Sample Problem 11.5 1

Ball thrown vertically from 12 m level 
in elevator shaft with initial velocity 
of 18m/s. At same instant, open-
platform elevator passes 5 m level 
moving upward at 2m/s.

Determine (a) when and where ball 
hits elevator and (b) relative velocity 
of ball and elevator at contact.

Strategy:

• Substitute initial position and velocity 
and constant acceleration of ball into 
general equations for uniformly 
accelerated rectilinear motion.

• Substitute initial position and constant 
velocity of elevator into equation for 
uniform rectilinear motion.

• Write equation for relative position of 
ball with respect to elevator and solve 
for zero relative position, that is, 
impact.

• Substitute impact time into equation 
for position of elevator and relative 
velocity of ball with respect to elevator.



© 2019 McGraw-Hill Education.

Sample Problem 11.5 2

Modeling and Analysis:

• Substitute initial position and velocity and 
constant acceleration of ball into general equations 
for uniformly accelerated rectilinear motion.
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
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
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









• Substitute initial position and constant velocity of 
elevator into equation for uniform rectilinear motion.

ttvyy
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E






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



s

m
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Sample Problem 11.5 3

• Write equation for relative position of ball with respect to 
elevator and solve for zero relative position, i.e., impact.

    025905.41812 2  ttty EB

 
s65.3

smeaningles  s39.0




t

t

• Substitute impact time into equations for position of elevator 
and relative velocity of ball with respect to elevator.

 5 2 3.65 s Ey
m3.12Ey

 
 

18 9.81t 2

16 9.81 3.65

  

 
B Ev

s

m
81.19EBv
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Sample Problem 11.5 4

Reflect and Think:

The key insight is that, when two particles collide, 
their position coordinates must be equal. Also, 
although you can use the basic kinematic 
relationships in this problem, you may find it easier 
to use the equations relating a, v, x, and t when the 
acceleration is constant or zero.



© 2019 McGraw-Hill Education.

Motion of Several Particles: Dependent 
Motion

• Position of a particle may depend on position of one 
or more other particles.

• Position of block B depends on position of block A. 
Since rope is of constant length, it follows that sum of 
lengths of segments must be constant.

 BA xx 2 constant (one degree of freedom)

• Positions of three blocks are dependent.

 CBA xxx 22 constant (two degrees of freedom)

• For linearly related positions, similar relations hold 
between velocities and accelerations.

022or022

022or022





CBA
CBA

CBA
CBA

aaa
dt

dv

dt

dv

dt

dv

vvv
dt

dx

dt

dx

dt

dx
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Sample Problem 11.7 1

Pulley D is attached to a collar which 
is pulled down at 75 mm/s.  At t = 0, 
collar A starts moving down from K
with constant acceleration and zero 
initial velocity.  Knowing that velocity 
of collar A is 300 mm/s as it passes L, 
determine the change in elevation, 
velocity, and acceleration of block B
when block A is at L.

Strategy:

• Define origin at upper horizontal surface 
with positive displacement downward.

• Collar A has uniformly accelerated 
rectilinear motion.  Solve for acceleration 
and time t to reach L.

• Pulley D has uniform rectilinear motion.  
Calculate change of position at time t.

• Block B motion is dependent on motions 
of  collar A and pulley D.  Write motion 
relationship and solve for change of block 
B position at time t.  

• Differentiate motion relation twice to 
develop equations for velocity and 
acceleration of block B.
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Sample Problem 11.7 2

Modeling and Analysis: 

• Define origin at upper horizontal surface with 
positive displacement downward.

• Collar A has uniformly accelerated rectilinear 
motion.  Solve for acceleration and time t to reach L.
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Sample Problem 11.7 3

• Pulley D has uniform rectilinear motion.  Calculate 
change of position at time t.

• Block B motion is dependent on motions of  collar 
A and pulley D.  Write motion relationship and 
solve for change of block B position at time t.  

Total length of cable remains constant,

( )0 400mm.- =-B Bx x
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Sample Problem 11.7 4

• Differentiate motion relation twice to develop 
equations for velocity and acceleration of block B.

mm
450

s
=Bv

2

mm
225

s
=-Ba

Reflect and Think:
In this case, the relationship we needed was not between position coordinates, 
but between changes in position coordinates at two different times. The key 
step is to clearly define your position vectors. This is a two degree-of-freedom 
system, because two coordinates are required to completely describe it.
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Group Problem Solving 8

Slider block A moves to the left with a 
constant velocity of 6 m/s. Determine the 
velocity of block B.

Strategy:

• Sketch your system and choose 
coordinate system.

• Write out constraint equation.
• Differentiate the constraint equation 

to get velocity.
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Group Problem Solving 9

Given: vA= 6 m/s left Find: vB

This length is constant no matter how the blocks move

Sketch your system and choose coordinates

Define your constraint equation(s)

const nts3 aA Bx y L  

Differentiate the constraint equation to 
get velocity

6 m/s + 3 0Bv 

2 m/sB  v

Note that as xA gets bigger, yB gets smaller.
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Group Problem Solving 10

Reflect and Think:

Physically it makes sense, by looking at the 
system, block B must move upward if block A is 
to move to the left.

The velocity of block B should also be less than 
that of block A.
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Graphical Solutions 1

Engineers often collect position, velocity, and acceleration 
data. Graphical solutions are often useful in analyzing 
these data.
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Graphical Solutions 2

• Given the x-t curve, the v-t curve is equal to the x-t
curve slope.

• Given the v-t curve, the a-t curve is equal to the v-t
curve slope.
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Graphical Solutions 3

• Given the a-t curve, the change in velocity between t1 and t2 is 
equal to the area under the a-t curve between t1 and t2.

• Given the v-t curve, the change in position between t1 and t2 is 
equal to the area under the v-t curve between t1 and t2.
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Curvilinear Motion: Position, Velocity & 
Acceleration 1

The snowboarder and the train both undergo 
curvilinear motion.

• A particle moving along a curve other than a straight line is in 
curvilinear motion.

© Purestock/ Superstock RF, © Tony Hertz/ Alamy
,
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Curvilinear Motion: Position, Velocity & 
Acceleration 2

• The position vector of a particle at time t is defined by a vector between 
origin O of a fixed reference frame and the position occupied by particle.

• Consider a particle which occupies position P defined by r


at time t and P′

defined by at? 


t r + Δt,
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Curvilinear Motion: Position, Velocity & 
Acceleration 3

Instantaneous velocity 
(vector)

0
lim

t

r dr
v

t dt 


 



 


Instantaneous speed 
(scalar)

0
lim

t

s ds
v

t dt 


 


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Curvilinear Motion: Position, Velocity & 
Acceleration 4

• Consider velocity v


of a particle at time t and velocity at 


tv  + Δt,

0
lim

t

v dv
a

t dt 


  



 
 instantaneous acceleration (vector)

• In general, the acceleration vector is not tangent to the particle path and 
velocity vector.
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Rectangular Components of Velocity & 
Acceleration 1

• When position vector of particle P is given by its 
rectangular components,

kzjyixr
 

• Velocity vector,

kvjviv

kzjyixk
dt

dz
j

dt

dy
i

dt

dx
v

zyx

















• Acceleration vector,

kajaia

kzjyixk
dt

zd
j

dt

yd
i

dt

xd
a

zyx
















2

2

2

2

2

2
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Rectangular Components of Velocity & 
Acceleration 2

• Rectangular components particularly effective 
when component accelerations can be integrated 
independently, example: motion of a projectile,

00  zagyaxa zyx 

with initial conditions,

      0,,0 000000  zyx vvvzyx

Integrating twice yields

   
    0

0
2

2
1

00

00





zgtyvytvx

vgtvvvv

yx

zyyxx

• Motion in horizontal direction is uniform.

• Motion in vertical direction is uniformly accelerated.

• Motion of projectile could be replaced by two 
independent rectilinear motions.
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Sample Problem 11.10 1

A projectile is fired from the 
edge of a 150-m cliff with an 
initial velocity of 180 m/s at an 
angle of 30° with the horizontal. 
Neglecting air resistance, find 
(a) the horizontal distance from 
the gun to the point where the 
projectile strikes the ground, (b) 
the greatest elevation above the 
ground reached by the projectile.

Strategy:

• Consider the vertical and horizontal motion 
separately (they are independent).

• Apply equations of motion in y-direction.

• Apply equations of motion in x-direction.

• Determine time t for projectile to hit 
the ground, use this to find the 
horizontal distance.

• Maximum elevation occurs when 0.yv =
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Sample Problem 11.10 2

Modeling and Analysis:

Given:    o o
= 180m / s = 150mv y

   2 29.81m/s 0m/s  
y x

a a

Vertical motion – uniformly accelerated: 

   
0

180 m / s sin 30 90m / s  
yv

   

   

   

0

2

0

22 2

0

    90 9.81

1
90t 4.90

1

2

2      8100 19.62  

2

  3y

y y y

2
y

y y

v v at v t

y v t at y t

v v ay v y

   

   

   

Horizontal motion – uniformly accelerated: 

Choose positive x to the right as shown

   0
180 m / s cos 30 155.9m / s  

xv

  155.9tx 0
x = v x = t
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Sample Problem 11.10 3

Modeling and Analysis:

Horizontal distance

Projectile strikes the ground at: y = −150m

Substitute into equation (1) above

150 90 4.90 2= t t

Solving for t, we take the positive root
2 18.37 30.6 0 t t = 19.91st

Substitute t into equation (4)

 155.9 19.91x = 3100mx =

Maximum elevation occurs when 0yv =

0 8100 19.62 y= 413my

Maximum elevation above the ground = 150m + 413m = 563m
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Sample Problem 11.10 4

Reflect and Think:

Because there is no air resistance, you can 
treat the vertical and horizontal motions 
separately and can immediately write 
down the algebraic equations of motion. 
If you did want to include air resistance, 
you must know the acceleration as a 
function of speed (you will see how to 
derive this in Chapter 12), and then you 
need to use the basic kinematic 
relationships, separate variables, and 
integrate.
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Concept Quiz 5

If you fire a projectile from 150 
meters above the ground (see 
Ex Problem 11.10), what launch 
angle will give you the greatest 
horizontal distance x?

a) A launch angle of 45°

b) A launch angle less than 45°

c) A launch angle greater than 45°

d) It depends on the launch velocity
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Concept Quiz 6

If you fire a projectile from 150 
meters above the ground (see 
Ex Problem 11.10), what launch 
angle will give you the greatest 
horizontal distance x?

a) A launch angle of 45°

b) Answer: A launch angle less than 45°

c) A launch angle greater than 45°

d) It depends on the launch velocity
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Group Problem Solving 11

A baseball pitching machine
“throws” baseballs with a
horizontal velocity v0. If you
want the height h to be
1050 mm, determine the value
of v0.

Strategy:

• Consider the vertical and horizontal motion 
separately (they are independent)

• Apply equations of motion in y-direction

• Apply equations of motion in x-direction

• Determine time t for projectile to fall to 
1050 mm

• Calculate v0=0
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Group Problem Solving 12

Analyze the motion in 
the y-direction

Given: x= 12.2 m, yo = 1.5 
m, yf= 1050 mm. 
Find:  vo

2
0

1
(0)

2fy y t gt  

2 21
0.45 m (9.81 m/s )

2
t 

21
1.05 1.5

2
gt 

0.30289 st 

Analyze the motion in 
the x-direction

0 00 ( )xx v t v t  

012.2 m ( )(0.30289 s)v

0 40.3 m/s 145 km/hv  

Modeling and Analysis: 

Reflect and Think: 
Units are correct and magnitudes 
are reasonable
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Motion Relative to a Frame in 
Translation 1

It is critical for a pilot to know the relative motion of his helicopter 
with respect to the aircraft carrier to make a safe landing.

© Digital Vision/Getty Images RF
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Motion Relative to a Frame in 
Translation 2

• Designate one frame as the fixed frame of reference. 
All other frames not rigidly attached to the fixed 
reference frame are moving frames of reference.

• Position vectors for particles A and B with respect 
to the fixed frame of reference Oxyz are . and BA rr



• Vector ABr


joining A and B defines the position of

B with respect to the moving frame andAx y z  

. 
  
B A B Ar r r

• Differentiating twice,

ABAB vvv
  ABv


velocity of B relative to A.

ABAB aaa
  ABa


acceleration of B relative to A.

• Absolute motion of B can be obtained by combining 
motion of A with relative motion of B with respect 
to moving reference frame attached to A.
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Sample Problem 11.14 1

Automobile A is traveling east at the 
constant speed of 36 km/h. As 
automobile A crosses the intersection 
shown, automobile B starts from rest 
35 m north of the intersection and 
moves south with a constant 
acceleration of 21.2 m / s . Determine
the position, velocity, and
acceleration of B relative to A 5 s
after A crosses the intersection.

Strategy:

• Define inertial axes for the system.

• Determine the position, speed, and 
acceleration of car A at t = 5 s.

• Determine the position, speed, and 
acceleration of car B at t = 5 s.

• Using vectors (Equation 11.30, 11.32, 
and 11.33) or a graphical approach, 
determine the relative position, velocity, 
and acceleration.



© 2019 McGraw-Hill Education.

Sample Problem 11.14 2

Modeling and Analysis:

• Define axes along the road,

Given:  
   

A A A 0

2
B B B0 0

v 36 km / h, a 0, x 0

v 0, a 1.2m / s , y 35 m

  

   

Determine motion of Automobile A:

A

km 1000 m 1h
v 36 10m / s

h 1km 3600s

       
   

We have uniform motion for A so:

 

0

10 m / s


 

A

A

A A A0

a

v

x = x +v t = 0+10t

At t = 5 s

  

0

10 m / s

= + 10 m / s 5s = +50m


 

A

A

A

a

v

x

A

A

A

0

10m / s

50m


 
 

a

v

r
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Sample Problem 11.14 3

Modeling and Analysis:

Determine motion of Automobile B:

We have uniform acceleration for B so:

 

     

2
B

B B 0

2 2
B B B B0 0

a = -1.2 m / s

v = v + at = 0 -1.2 t

1 1
y - y + v t + a t = 35+0 - 1.2 t

2 2

At t = 5 s

  

  

2
B

2
B

22
B

a = -1.2 m / s

v = - 1.2 m / s 5 s = -6 m / s

1
y = 35 - 1.2 m / s 5 s = +20 m

2
2

B

B

B

1.2 m / s

6 m / s

20m

 

 

 

a

v

r
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Sample Problem 11.14 4

A

A

A

0

10m / s

50 m


 
 

a

v

r

2
B

B

B

1.2 m / s

6 m / s

20 m

 

 

 

a

v

r

We can solve the problems geometrically, and apply the arctangent relationship:

B Ar 53.9 m 21.8   11.66m / sB Av 31.0  

Or we can solve the problems using vectors to obtain equivalent results:

 B A B/ Ar r r

20 50

20 50 (m)

 
 

B/A

B/A

j i r

r j i  

 B A B/Av v v

6 10

6 10 (m/s)

  
  

B/ A

B/A

j i v

v j i  

 B A B/Aa a a

2

1.2 0

1.2 (m/s )

  

 
B/A

B/A

j i a

a j  

Physically, a rider in car A would “see” car B travelling south and west.
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Sample Problem 11.14 5

Reflect and Think:

Note that the relative position and velocity of 
B relative to A change with time; the values 
given here are only for the moment t = 5 s. 
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Concept Quiz 3

If you are sitting in train 
B looking out the window, 
it which direction does it 
appear that train A is 
moving?

a)

b)

c)

d)
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Concept Quiz 4

If you are sitting in train 
B looking out the window, 
it which direction does it 
appear that train A is 
moving?

a)

b)

c) Answer: 

d)
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Tangential and Normal Components 1

If we have an idea of the path of a vehicle or object, it is often 
convenient to analyze the motion using tangential and normal 
components (sometimes called path coordinates).

© Rusell lllig/Getty Images RF, © Alan Schein/ Getty Images
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Tangential and Normal Components 2

• The tangential direction (et) is tangent to the path of the 
particle. This velocity vector of a particle is in this 
direction.

• The normal direction (en) is perpendicular to et and points 
towards the inside of the curve.

• The acceleration can have components in both the en and et directions.

ρ = the instantaneous 
radius of curvature

v tv e

2dv v

dt 
 t na e e
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Tangential and Normal Components 3

• To derive the acceleration vector in tangential 
and normal components, define the motion of a 
particle as shown in the figure.

• tt ee
  and are tangential unit vectors for the

particle path at andP P'.When drawn with
respect to the same origin, ttt eee

  and
 is the angle between them.

 

 












d

ed
e

ee
e

e

t
n

nn
t

t



















 2

2sin
limlim

2sin2

00
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Tangential and Normal Components 4

• With the velocity vector expressed as
 

tv = ve

the particle acceleration may be written as

dt

ds

ds

d

d

ed
ve

dt

dv

dt

ed
ve

dt

dv

dt

vd
a tt











 

but

v
dt

ds
dsde

d

ed
n

t  





After substituting,



22 v
a

dt

dv
ae

v
e

dt

dv
a ntnt  

• The tangential component of acceleration 
reflects change of speed and the normal 
component reflects change of direction.

• The tangential component may be positive or 
negative. Normal component always points 
toward center of path curvature.
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Tangential and Normal Components 5

• Relations for tangential and normal 
acceleration also apply for particle moving 
along a space curve.



22 v
a

dt

dv
ae

v
e

dt

dv
a ntnt  

• The plane containing tangential and normal unit 
vectors is called the osculating plane.

• The normal to the osculating plane is found from

ntb eee
 

binormale

normalprincipal e

b

n

 

 








• Acceleration has no component along the binormal.
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Sample Problem 11.16 1

A motorist is traveling on a curved
section of highway of radius 750 m
at the speed of 90 km/h. The
motorist suddenly applies the brakes,
causing the automobile to slow
down at a constant rate. Knowing
that after 8 s the speed has been
reduced to 72 km/h, determine the
acceleration of the automobile
immediately after the brakes have
been applied.

Strategy: 

• Define your coordinate system

• Calculate the tangential velocity and 
tangential acceleration

• Determine overall acceleration magnitude 
after the brakes have been applied

• Calculate the normal acceleration
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Sample Problem 11.16 2

Modeling and Analysis:
• Define your coordinate system
• Determine velocity and acceleration in 

the tangential direction

• The deceleration constant, therefore

• Immediately after the brakes are applied, 
the speed is still 25 m/s

2 2 2 20.625 0.833n ta a a   



© 2019 McGraw-Hill Education.

Sample Problem 11.16 3

Reflect and Think: 

The tangential component of acceleration is 
opposite the direction of motion, and the 
normal component of acceleration points to 
the center of curvature, which is what you 
would expect for slowing down on a curved 
path. Attempting to do the problem in 
Cartesian coordinates is quite difficult.
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Tangential and Normal Components 6

In 2001, a race scheduled at the Texas Motor Speedway was 
cancelled because the normal accelerations were too high and 
caused some drivers to experience excessive g-loads (similar to 
fighter pilots) and possibly pass out. What are some things that 
could be done to solve this problem?

Some possibilities:
Reduce the allowed speed 
Increase the turn radius 
(difficult and costly)
Have the racers wear g-suits

© Glow Images RF
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Group Problem Solving 13

The tangential acceleration of the 
centrifuge cab is given by

20.5   (m/s )ta t

where t is in seconds and at is in
2m / s . If the centrifuge starts from

rest, determine the total acceleration 
magnitude of the cab after 10 
seconds.

Strategy:

• Define your coordinate system.

• Calculate the tangential velocity and 
tangential acceleration.

• Calculate the normal acceleration.

• Determine overall acceleration 
magnitude. 
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Group Problem Solving 14

Modeling and Analysis:

Define your coordinate system

In the side view, the tangential 
direction points into the “page”.

Determine the tangential velocity

0.5ta t

2 2

00
0.5 0.25 0.25

t t

tv t dt t t  
 2

0.25 10 25 m/stv  

Determine the normal acceleration

 2 2
225

78.125 m/s
8

  t
n

v
a

r

Determine the total acceleration magnitude

 22 2 278.125 + (0.5)(10)  mag n ta a a   278.285 m/smaga 
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Group Problem Solving 15

Reflect and Think:

Notice that the normal 
acceleration is much higher than 
the tangential acceleration. What 
would happen if, for a given 
tangential velocity and 
acceleration, the arm radius was 
doubled?

a) The accelerations would remain the same
b) The an would increase and the at would decrease
c) The an and at would both increase
d) The an would decrease
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Group Problem Solving 16

Reflect and Think:

Notice that the normal 
acceleration is much higher than 
the tangential acceleration. What 
would happen if, for a given 
tangential velocity and 
acceleration, the arm radius was 
doubled?

a) The accelerations would remain the same
b) The an would increase and the at would decrease
c) The an and at would both increase
d) Answer: The an would decrease
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Radial and Transverse Components 1

The foot pedal on an elliptical machine 
rotates about and extends from a central 
pivot point. This motion can be analyzed 
using radial and transverse components 

Fire truck ladders can rotate as well as 
extend; the motion of the end of the 
ladder can be analyzed using radial 
and transverse components.

© Syracuse Newspapers/M Greenlar/The Image Works, © Fuse/ Getty Images RF
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Radial and Transverse Components 2

• The position of a particle P is 
expressed as a distance r from the 
origin O to P – this defines the 
radial direction er. The transverse 
direction eq is perpendicular to er,

rerr
 

• The particle velocity vector is:

rv r e r e 
  

• The particle acceleration vector is:

   2 2ra r r e r r e     
     
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Radial and Transverse Components 3

rerr
 

r
r e

d

ed
e

d

ed 











dt

d
e

dt

d

d

ed

dt

ed rr 
 






dt

d
e

dt

d

d

ed

dt

ed
r



 




• We can derive the velocity and acceleration 
relationships by recognizing that the unit vectors 
change direction.

• The particle velocity vector is:

 









erer

e
dt

d
re

dt

dr

dt

ed
re

dt

dr
er

dt

d
v

r

r
r

rr













• Similarly, the particle acceleration vector is:

    











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dt
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dt
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dt
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dt
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








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Concept Quiz 7

If you are travelling in a perfect 
circle, what is always true about 
radial/transverse coordinates and 
normal/tangential coordinates?

a) The er direction is identical to the en direction.
b) The eq direction is perpendicular to the en direction.
c) The eq direction is parallel to the er direction.
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Concept Quiz 8

If you are travelling in a perfect 
circle, what is always true about 
radial/transverse coordinates and 
normal/tangential coordinates?

a) The er direction is identical to the en direction.
b) Answer: The eq direction is perpendicular to the en

direction.
c) The eq direction is parallel to the er direction.
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Radial and Transverse Components 4

• When particle position is given in cylindrical 
coordinates, it is convenient to express the 
velocity and acceleration vectors using the 
unit vectors . and ,, keeR




• Position vector,

kzeRr R
 

• Velocity vector,

kzeReR
dt

rd
v R







  

• Acceleration vector,

    kzeRReRR
dt

vd
a R







   22
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Sample Problem 11.18 1

Rotation of the arm about O is defined
by 0.15 Where2θ = t is in radians and t
in seconds. Collar B slides along the
arm such that 0.9 0.12 2r = t where r is
in meters.

After the arm has rotated through 30°
determine (a) the total velocity of the 
collar, (b) the total acceleration of the 
collar, and (c) the relative acceleration 
of the collar with respect to the arm.

Strategy:

• Evaluate time t for θ = 30°.

• Evaluate radial and angular positions, 
and first and second derivatives at 
time t.

• Calculate velocity and acceleration 
in cylindrical coordinates.

• Evaluate acceleration with respect to 
arm.
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Sample Problem 11.18 2

Modeling and Analysis

• Evaluate time t for θ = 30°.

s 869.1rad524.030

0.15 2




t

t

• Evaluate radial and angular positions, 
and first and second derivatives at time t.

2

2

sm24.0

sm449.024.0

m 481.012.09.0






r

tr

tr





2

2

srad30.0

srad561.030.0

rad524.015.0














 t

t
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Sample Problem 11.18 3

• Calculate velocity and acceleration.

  

r
r

r

v

v
vvv

rv

srv










122 tan

sm270.0srad561.0m481.0

m449.0










 0.31sm524.0 v

  

     

r
r

r

a

a
aaa

rra

rra












122

2

2

2

22

2

tan

sm359.0

srad561.0sm449.02srad3.0m481.0

2

sm391.0

srad561.0m481.0sm240.0



















 6.42sm531.0 a
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Sample Problem 11.18 4

• Evaluate acceleration with respect to arm.
Motion of collar with respect to arm is 
rectilinear and defined by coordinate r.

2sm240.0 ra OAB 

Reflect and Think:
You should consider polar coordinates for any 
kind of rotational motion. They turn this problem 
into a straightforward solution, whereas any 
other coordinate system would make this 
problem much more difficult. One way to make 
this problem harder would be to ask you to find 
the radius of curvature in addition to the velocity 
and acceleration. To do this, you would have to 
find the normal component of the acceleration; 
that is, the component of acceleration that is 
perpendicular to the tangential direction defined 
by the velocity vector.
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Group Problem Solving 17

The angular acceleration of the 
centrifuge arm varies according to 

20.05   (rad/s ) 

Where θ is measured in radians. If the 
centrifuge starts from rest, determine 
the acceleration magnitude after the 
gondola has travelled two full rotations.

Strategy:

• Define your coordinate system.

• Calculate the angular velocity after 
three revolutions.

• Calculate the radial and transverse 
accelerations.

• Determine overall acceleration 
magnitude.
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Group Problem Solving 18

Modeling and Analysis:

Define your coordinate system

In the side view, the transverse 
direction points into the “page”

Determine the angular velocity
20.05   (rad/s ) 

Acceleration is a function 
of position, so use:

d d     

Evaluate the integral
(2)(2 )

0 0

0.05 d d
 

    


 

2(2 )2 2

0 0

0.05

2 2


 






 22 0.05 2(2 ) 
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Group Problem Solving 19

Determine the angular velocity
 22 0.05 2(2 ) 

2.8099 rad/s 

Determine the angular acceleration
20.05  = 0.05(2) (2 ) 0.6283 rad/s   

Find the radial and transverse accelerations

   
   

2

2

2

2

  0 (8)(2.8099) (8)(0.6283) 0

  63.166 5.0265   (m/s )

r

r

r

a r r e r r e

e e

e e







     

   

  

     

 

 

Magnitude:

 22 2 2( 63.166) + 5.0265  mag ra a a    2 63.365 m/smaga 
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Group Problem Solving 20

Reflect and Think:

What would happen if you 
designed the centrifuge so 
that the arm could extend 
from 6 to 10 meters? 

You could now have additional acceleration terms. This might 
give you more control over how quickly the acceleration of the 
gondola changes (this is known as the G-onset rate).

   2 2ra r r e r r e     
     
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End of Chapter 11


