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Energy and Momentum Methods

The potential energy of the 
roller coaster car is converted 
into kinetic energy as it 
descends the track.

Impact tests are often 
analyzed by using 
momentum methods.
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Introduction 1

• Previously, problems dealing with the motion of particles 
were solved through the fundamental equation of motion,

.F ma 
 

• The current chapter introduces two additional methods of 
analysis.

• Method of work and energy: directly relates force, mass, 
velocity and displacement.

• Method of impulse and momentum: directly relates 
force, mass, velocity, and time.
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Introduction 2

Approaches to Kinetics Problems

GF ma
 

2211 TUT  
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mv F dt mv 
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Work of a Force 1

• Differential vector rd


is the particle displacement.

• Work of the force is 

dzFdyFdxF

dsF

rdFdU

zyx 



cos



• Work is a begin underline scalar end underline quantity, that is, it has magnitude and 
sign but not direction.

• Dimensions of  work are length×force. Units 
are

( ) ( )( )1 J 1 N 1 mjoule =
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Work of a Force 2

• Work of a force during a finite displacement,

 

 











2

1

2

1

2

1

2

1

cos
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zyx

s

s
t

s

s
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A

dzFdyFdxF

dsFdsF

rdFU





• Work is represented by the area under the 
curve of Ft plotted against s.

• Ft is the force in the direction of the 
displacement ds
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Work of a Force 3

What is the work of a constant force in 
rectilinear motion?

a)
1 2U F x  

b)  1 2 cosU F x  

c)  1 2 sinU F x  

d) 1 2 0U  



© 2019 McGraw-Hill Education.

Work of a Force 4

What is the work of a constant force in 
rectilinear motion?

a)
1 2U F x  

b) Answer  1 2 cosU F x  

c)  1 2 sinU F x  

d) 1 2 0U  
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Work of a Force 5

• Work of the force of gravity,

  yWyyW

dyWU

dyW

dzFdyFdxFdU

y

y

zyx











12

21

2

1

• Work of the weight is equal to product of 
weight W and vertical displacement Δy.

• In the figure above, when is the work done by the weight positive?

a) Moving from y1 to y2 b) Moving from y2 to y1 c) Never
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Work of a Force 6

• Work of the force of gravity,

  yWyyW

dyWU

dyW

dzFdyFdxFdU

y

y

zyx











12

21

2

1

• Work of the weight is equal to product of 
weight W and vertical displacement Δy.

• In the figure above, when is the work done by the weight positive?

a) Moving from y1 to y2 Answer: b) Moving from y2 to y1 c) Never
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Work of a Force 7

• Magnitude of the force exerted by a spring is 
proportional to deflection,

• Work of the force exerted by spring,

2
22

12
12

1
21

2

1

kxkxdxkxU

dxkxdxFdU
x

x







• Work of the force exerted by spring is positive

when 12x < x , that is, when the spring is returning to

its undeformed position.

• Work of the force exerted by the spring is equal to 
negative of area under curve of F plotted against x,

  xFFU  212
1

21
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Work of a Force 8

As the block moves from A0 to A1, is 
the work positive or negative?

Positive Negative

Displacement is 
in the opposite 
direction of the 
force

As the block moves from A2 to Ao, is 
the work positive or negative?

Positive Negative
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Work of a Force 9

As the block moves from A0 to A1, is 
the work positive or negative?

Positive Answer: Negative

Displacement is 
in the opposite 
direction of the 
force

As the block moves from A2 to Ao, is 
the work positive or negative?

Answer: Positive Negative
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Work of a Force 10

Work of a gravitational force (assume particle M
occupies fixed position O while particle m follows path 
shown),

12
221

2

2

1
r

Mm
G

r

Mm
Gdr

r

Mm
GU

dr
r

Mm
GFdrdU

r

r






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Work of a Force 11

Positive or

Negative work?

Does the normal force do work as the 
block slides from B to A?

YES NO

Does the weight do work as 
the block slides from B to A?

YES NO
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Work of a Force 12

Positive or

Negative work?

Does the normal force do work as the 
block slides from B to A?

YES Answer: NO

Does the weight do work as 
the block slides from B to A?

Answer: YES NO



© 2019 McGraw-Hill Education.

Work of a Force 13

Forces which do not do work  0 or cos 0 ds

• Reaction at frictionless pin supporting rotating body,

• Reaction at frictionless surface when body 
in contact moves along surface,

• Reaction at a roller moving along its track, and

• Weight of a body when its center of gravity 
moves horizontally.
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Principle of Work & Energy

• Consider a particle of mass m acted upon by force ,

F

dvmvdsF
ds

dv
mv

dt

ds

ds

dv
m

dt

dv
mmaF

t

tt







• Integrating from A1 to A2 ,

energykineticmvTTTU

mvmvdvvmdsF
v

v

s

s
t









2
2
1

1221

2
12

12
22

1
2

1

2

1

• The work of the force F


is equal to the change in
kinetic energy of the particle.

• Units of work and kinetic energy are the same:

JmNm
s

m
kg

s

m
kg

2

2
2

2
1 













 mvT
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Applications of the Principle of Work 
and Energy 1

• The bob is released
from rest at position
A1. Determine the
velocity of the
pendulum bob at A2

using work & kinetic
energy.

• Force P


acts normal to path and does no
work.

glv

v
g

W
Wl

TUT

2

2

1
0

2

2
2

2211





 

• Velocity is found without determining 
expression for acceleration and integrating.

• All quantities are scalars and can be added 
directly.

• Forces which do no work are eliminated from 
the problem.
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Applications of the Principle of Work 
and Energy 2

glv 22 

• Principle of work and energy cannot be 
applied to directly determine the acceleration 
of the pendulum bob.

• Calculating the tension in the cord requires 
supplementing the method of work and energy with 
an application of Newton’s second law.

• As the bob passes through A2 ,

W
l

gl

g

W
WP

l

v

g

W
WP

amF nn

3
2

2
2







If you designed the rope to hold twice the weight of the bob, what would happen?
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Power and Efficiency

• Power = rate at which work is done.

dU F dr

dt dt

F v


 

 

 

 

• Dimensions of power are work/time or force*velocity.  
Units for power are:

W746
s

lbft
550 hp 1or

s

m
N 1

s

J
1  (watt) W 1 




•

inputpower 

outputpower 

input work

koutput wor

efficiency






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Sample Problem 13.1 1

An automobile of mass 1000 kg is 
driven down a 5o incline at a speed of 
72 km/h when the brakes are applied 
causing a constant total breaking force 
of 5000 N.

Determine the distance traveled by the 
automobile as it comes to a stop.

Strategy: 

• Evaluate the change in kinetic energy.

• Determine the distance required for the 
work to equal the kinetic energy change.
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Sample Problem 13.1 2

Modeling and Analysis: 

• Evaluate the change in kinetic energy.

48.3 m=x

• Determine the distance required for the work 
to equal the kinetic energy change.

00 22  Tv
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Sample Problem 13.1 3

Reflect and Think

• Solving this problem using Newton’s 
second law would require determining 
the car’s deceleration from the free-
body diagram and then integrating this 
to use the given velocity information. 

• Using the principle of work and 
energy allows you to avoid that 
calculation.
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Sample Problem 13.2 1

Two blocks are joined by an inextensible 
cable as shown. If the system is released 
from rest, determine the velocity of block 
A after it has moved 2 m. Assume that the 
coefficient of friction between block A and 
the plane is μk = 0.25 and that the pulley is 
weightless and frictionless.

Strategy:

• Apply the principle of work and 
energy separately to blocks A and B.

• When the two relations are combined, 
the work of the cable forces cancel.  
Solve for the velocity.



© 2019 McGraw-Hill Education.

Sample Problem 13.2 2

Modeling and Analysis

• Apply the principle of work and energy separately 
to blocks A and B.

  
 

   

       2
2
1

2
2
1

2211

2

kg200m2N490m2

m2m20

:

N490N196225.0

N1962sm81.9kg200

vF

vmFF

TUT

WNF

W

C

AAC

AkAkA

A














  

   

       2
2
1

2
2
1

2211

2

kg300m2N2940m2

m2m20

:

N2940sm81.9kg300

vF

vmWF

TUT

W

c

BBc

B









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Sample Problem 13.2 3

• When the two relations are combined, the work of the 
cable forces cancel. Solve for the velocity.

       2
2
1 kg200m2N490m2 vFC 

       2
2
1 kg300m2N2940m2 vFc 

       

  2
2
1

2
2
1

kg500J 4900

kg300kg200m2N490m2N2940

v

v





sm 43.4v
Reflect and Think:

This problem can also be solved by applying the principle 
of work and energy to the combined system of blocks.

When using the principle of work and energy, it usually 
saves time to choose your system to be everything that 
moves. 
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13.2 – Alternate Solution, Group Problem 
Solving

Could you apply work-energy to the combined 
system of blocks?

Given: 1  0,  distance  2 m,  0.25  kv μ

What is T1 of the system?

1 0T 

What is the total work done between points 1 and 2?

          1 2 0.25 200 9.81 2m 300 9.81 2 m 4900 JU     

What is T2 of the system?
Note that A Bv = v

   2 2 2 21 1 1 1
2 2 2 2 2200kg 300kgA BT m v m v v v   

Solve for v
  21

24900 J 500kg v
sm 43.4v
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Sample Problem 13.3 1

A spring is used to stop a 60 kg package 
which is sliding on a horizontal surface.  
The spring has a constant k = 20 kN/m 
and is held by cables so that it is initially 
compressed 120 mm. The package has a 
velocity of 2.5 m/s in the position shown 
and the maximum deflection of the 
spring is 40 mm.
Determine (a) the coefficient of kinetic 
friction between the package and surface 
and (b) the velocity of the package as it 
passes again through the position shown.

Strategy:

• Apply the principle of work and 
energy between the initial position 
and the point at which the spring is 
fully compressed and the velocity is 
zero. The only unknown in the 
relation is the friction coefficient.

• Apply the principle of work and energy 
for the rebound of the package. The 
only unknown in the relation is the 
velocity at the final position.
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Sample Problem 13.3 2

Modeling and Analysis:

• Apply principle of work and energy between initial 
position and the point at which spring is fully compressed.

   0J5.187sm5.2kg60 2
2

2
12

12
1

1  TmvT

 

      kk

kf xWU





J377m640.0sm81.9kg60 2

21





  
    

   
   J0.112m040.0N3200N2400

N3200m160.0mkN20

N2400m120.0mkN20

2
1

maxmin2
1

21

0max

0min








 xPPU

xxkP

kxP

e

      J112J377212121   kef UUU 

  0J112J 377-J5.187

:2211


 

k

TUT


20.0k
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Sample Problem 13.3 3

• Apply the principle of work and energy for the rebound 
of the package.

  2
32

12
32

1
32 kg600 vmvTT 

     
J36.5

J112J377323232



  kef UUU 

  2
32

1

3322

kg60J5.360

:

v

TUT



 

sm103.13 v

Reflect and Think:

You needed to break this problem into two segments. From the first segment you were 
able to determine the coefficient of friction. Then you could use the principle of work 
and energy to determine the velocity of the package at any other location. Note that the 
system does not lose any energy due to the spring; it returns all of its energy back to the 
package. You would need to design something that could absorb the kinetic energy of the 
package in order to bring it to rest.
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Sample Problem 13.6 1

A 1000 kg car starts from rest at point 
1 and moves without friction down the 
track shown.

Determine:

a) the force exerted by the track on 
the car at point 2, and 

b) the minimum safe value of the 
radius of curvature at point 3.

Strategy: 

• Apply principle of work and energy to 
determine velocity at point 2.

• Apply Newton’s second law to find 
normal force by the track at point 2.

• Apply principle of work and energy to 
determine velocity at point 3.

• Apply Newton’s second law to find 
minimum radius of curvature at point 3 
such that a positive normal force is 
exerted by the track.
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Sample Problem 13.6 2

Modeling and Analysis:

• Apply principle of work and energy to determine 
velocity at point 2.

• Apply Newton’s second law to find normal force by 
the track at point 2.

:nn amF  

49.05 kN=N
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Sample Problem 13.6 3

• Apply principle of work and energy to determine 
velocity at point 3.

• Apply Newton’s second law to find minimum radius of 
curvature at point 3 such that a positive normal force is 
exerted by the track.

:nn amF  
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Sample Problem 13.6 4

Reflect and Think

This is an example where you need both 
Newton’s second law and the principle of 
work and energy. 

Work–energy is used to determine the 
speed of the car, and Newton’s second law 
is used to determine the normal force. 

A normal force of 5W is equivalent to a 
fighter pilot pulling 5g’s and should only 
be experienced for a very short time.

For safety, you would also want to make 
sure your radius of curvature was quite a 
bit larger than 15 m.
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Sample Problem 13.7 1

The dumbwaiter D and its load have a 
combined mass of 300 kg, while the 
counterweight C has a mass of 400 kg.

Determine the power delivered by the 
electric motor M when the dumbwaiter 
(a) is moving up at a constant speed of 
2.5 m/s and (b) has an instantaneous 
velocity of 2.5 m/s and an acceleration of 
1 m/s2, both directed upwards.

Strategy:
Force exerted by the motor 
cable has same direction as 
the dumbwaiter velocity.  
Power delivered by motor is 
equal to  FvD, vD = 2.5 m/s.

• In the first case, bodies are in uniform 
motion.  Determine force exerted by 
motor cable from conditions for static 
equilibrium.

• In the second case, both bodies are 
accelerating.  Apply Newton’s 
second law to each body to 
determine the required motor cable 
force.
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Sample Problem 13.7 2

Modeling and Analysis:
• In the first case, bodies are in uniform motion.  

Determine force exerted by motor cable from 
conditions for static equilibrium.

( )( )981 N 2.5m s

2452 W

= =

=

DPower Fv

2450 W=Power

Free-body C:

:0  yF 2 400g 0 200g 1962 N- = = =T T

Free-body D:

:0  yF 300 g 0

300 g 300 g 200 g 100 g

981 N

+ - =

= - = - =

=

F T

F T
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Sample Problem 13.7 3

• In the second case, both bodies are accelerating.  Apply 
Newton’s second law to each body to determine the required 
motor cable force.

Free-body C:

:CCy amF   ( )400g 2 400 0.5 1862 NT T- = =

Free-body D:

:DDy amF   ( )
( )( )

300g 300 1

1862 300 9.81 300

1381 N

F T

F

F

+ - =

+ - =

=

( )( )1381 N 2.5m s 3452 W= = =DPower Fv

3450 W=Power
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Sample Problem 13.7 4

Reflect and Think
As you might expect, the motor needs to deliver more 
power to produce accelerated motion than to produce 
motion at constant velocity.
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Group Problem Solving 1

Packages are thrown down an 
incline at A with a velocity of 1 
m/s. The packages slide along 
the surface ABC to a conveyor 
belt which moves with a 
velocity of 2 m/s. Knowing that 
μk = 0.25 between the packages 
and the surface ABC, determine 
the distance d if the packages 
are to arrive at C with a 
velocity of 2 m/s.

Strategy:
The problem deals with a change in 
position and different velocities, so use 
work-energy.  

• Draw FBD of the box to help us 
determine the forces that do work.

• Determine the work done between 
points  A and C as a function of d.

• Find the kinetic energy at points A 
and C.

• Use the work-energy relationship and 
solve for d.



© 2019 McGraw-Hill Education.

Group Problem Solving 2

Modeling and Analysis:

A C KGiven :V 1m / s, V 2m / s,μ 0.25

Find :Distance

Will use :  

  

A A B B C C

d

T +U +U = T

Draw the FBD of the 
block at points A and C

Determine work done A → B

஺஻

஺஻ ௞ ஺஻

஺→஻ ஺஻

௞

Determine work done B → C

7 m

 
BC BC

BC k

B C k BC

N mg x

F mg

U mg x




 



 
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Group Problem Solving 3

Determine kinetic energy at A and at C

21
and 1 m/s

2A A AT mv v  21
and 2 m/s

2C C CT mv v 

Substitute values into A A B B C CT U U T   

஺
ଶ

௞ ௞ ஻஼ ଴
ଶ

Divide by m and solve for d

2 2

2 2

/2 /2

(sin 30 cos30 )

(2) /(2)(9.81) (0.25)(7) (1) /(2)(9.81)

sin 30 0.25cos30

C k BC A

k

v g x v g
d





   
  

 


  

𝑑 = 6.71  m



© 2019 McGraw-Hill Education.

Group Problem Solving 4

Reflect and Think

Kμ 0.25

If you wanted to bring the package to a complete stop at the 
bottom of the ramp, would it work to place a spring as shown?

No, because the potential energy of the spring would turn into kinetic energy 
and push the block back up the ramp

Would the package ever come to a stop?

Yes, eventually enough energy would be dissipated through the friction 
between the package and ramp.
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Potential Energy 1

The potential energy stored at the top of the ball’s path is transferred to 
kinetic energy as the ball meets the ground.  Why is the ball’s height 
reducing?
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Potential Energy 2

If the work of a force only depends on differences in 
position, we can express this work as potential energy.

Can the work done by the following forces be expressed as 
potential energy?

Weight Yes No

Friction Yes No

Normal force Yes No

Spring force Yes No
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Potential Energy 3

If the work of a force only depends on differences in 
position, we can express this work as potential energy.

Can the work done by the following forces be expressed as 
potential energy?

Weight Yes No

Friction Yes No

Normal force Yes No

Spring force Yes No
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Potential Energy 4

• Work of the force of gravity


W

• Work is independent of path followed; depends 
only on the initial and final values of Wy.

 gV Wy

= potential energy of the body with respect 
to force of gravity.

   
2121 gg VVU 

• Choice of datum from which the elevation 
y is measured is arbitrary.

• Units of work and potential energy are the same:

JmN WyVg



© 2019 McGraw-Hill Education.

Potential Energy 5

• Previous expression for potential energy of a body 
with respect to gravity is only valid when the 
weight of the body can be assumed constant.

• For a space vehicle, the variation of the force of 
gravity with distance from the center of the earth 
should be considered.

• Work of a gravitational force,

12
21 r

GMm

r

GMm
U 

• Potential energy Vg when the variation in the 
force of gravity can not be neglected,

r

WR

r

GMm
Vg

2


W = Weight on surface of earth, R = radius of earth 
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Potential Energy 6

• Work of the force exerted by a spring depends 
only on the initial and final deflections of the 
spring,

2
22

12
12

1
21 kxkxU 

• The potential energy of the body with respect 
to the elastic force,

   2121

2
2
1

ee

e

VVU

kxV







• Note that the preceding expression for Ve is 
valid only if the deflection of the spring is 
measured from its undeformed position.
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Conservative Forces
• Concept of potential energy can be applied if the 

work of the force is independent of the path 
followed by its point of application. 

   22211121 ,,,, zyxVzyxVU 

Such forces are described as conservative forces.

• For any conservative force applied on a closed path,

0 rdF


• Elementary work corresponding to displacement 
between two neighboring points,

   
 zyxdV

dzzdyydxxVzyxVdU

,,

,,,,




𝐹௫𝑑𝑥 + 𝐹௬𝑑𝑦 + 𝐹௭𝑑𝑧 = −
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦 +

𝜕𝑉

𝜕𝑧
𝑑𝑧

𝐹⃗ = −
𝜕𝑉

𝜕𝑥
,
𝜕𝑉

𝜕𝑦
,
𝜕𝑉

𝜕𝑧
= −grad𝑉
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Conservation of Energy
• Work of a conservative force,

2121 VVU 

• Concept of work and energy,

1221 TTU 

• Follows that

constant 
2211




VTE

VTVT

• When a particle moves under the action of 
conservative forces, the total mechanical 
energy is constant.





WVT

WVT




11

11 0

 





WVT

VWg
g

W
mvT





22

2
2
22

1
2 02

2

1 • Friction forces are not conservative.  Total 
mechanical energy of a system involving 
friction decreases.

• Mechanical energy is dissipated by friction 
into thermal energy.  Total energy is constant.
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Motion Under a Conservative Central 
Force

• When a particle moves under a conservative 
central force, both the principle of 
conservation of angular momentum

 sinsin 000 rmvmvr 

and the principle of conservation of energy 

r

GMm
mv

r

GMm
mv

VTVT





2
2
1

0

2
02

1

00

may be applied.

• Given r, the equations may be solved for and .v

• At minimum and maximum , 90 .  r Given the

launch conditions, the equations may be solved 
for rmin, rmax, vmin, and vmax.
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Sample Problem 13.8 1

A 10 kg collar slides without friction 
along a vertical rod as shown.  The 
spring attached to the collar has an 
undeflected length of 100 mm and a 
constant of 200 N/m.

If the collar is released from rest at 
position 1, determine its velocity after 
it has moved 150 mm to position 2.

Strategy:

• Apply the principle of conservation of 
energy between positions 1 and 2.

• The elastic and gravitational potential 
energies at 1 and 2 are evaluated from 
the given information.  The initial kinetic 
energy is zero.

• Solve for the kinetic energy and 
velocity at 2.
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Sample Problem 13.8 2

Modeling and Analysis:

• Apply the principle of conservation of energy between 
positions 1 and 2.

Position 1:

Position 2:

Conservation of Energy:
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Sample Problem 13.8 3

Reflect and Think
If you had not included the spring in your
system, you would have needed to treat it as 
an external force; therefore, you would 
have needed to determine the work. 

Similarly, if there was friction acting on the 
collar, you would have needed to use the 
more general work–energy principle to 
solve this problem. It turns out that the 
work done by friction is not very easy to 
calculate because the normal force depends 
on the spring force.
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Sample Problem 13.10 1

The 250-g pellet is pushed against the 
spring at A and released from rest.  It 
moves along a 1.2 m rough horizontal 
section, then into a smooth 600 mm-radius

vertical loop. On the rough surface, K
is 0.3, and the spring is initially 
compressed 75 mm. What is the 
minimum spring constant k for which 
the pellet remains in contact with the 
loop?

Strategy:

• Since there is friction along the 
rough patch from A to B, 
conservation of energy cannot be 
used. Instead, apply the more general 
work-energy principle. 

• For the pellet to remain in contact 
with the loop, the force N exerted on 
the pellet by the loop must be equal 
to or greater than zero. Therefore, 
you also need to use Newton’s 
second law. 
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Sample Problem 13.10 2

Modeling and Analysis:

• Setting the force exerted by the loop to zero, solve for the 
minimum velocity at D.

:nn maF  
( )( )

2

22 2 20.6 m 9.81 m s 5.886m s
n D

D

W ma mg mv r

v rg

= =

= = =

• Apply the work-energy principle between positions 1
and 2.

𝑉ଵ = 𝑉௘ + 𝑉௚ =
1

2
𝑘𝑥ଶ + 0 =

1

2
(𝑘)(0.075 m)ଶ = 2.8125  ×  10ିଷ𝑘

𝑇ଵ = 0

𝑉ଶ = 𝑉௘ + 𝑉௚ = 0 + 𝑊𝑦 = 0.25kg 9.81m/sଶ 1.2 m = 2.943J

𝑇ଶ =
1

2
𝑚𝑣஽

ଶ =
1

2
(0.25 kg) 5.886 

mଶ

sଶ
= 0.73575J
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Sample Problem 13.10 3

Because the normal force is equal to the 
weight on a horizontal surface, you can find 
the work done by the non-conservative

friction force, 𝑈ே஼
ଵିଶ, to be:

ଵିଶ
ே஼

௞
ଶ

ଵ ଵ ଵିଶ
ே஼

ଶ ଶ
ିଷ

This can be solved for k to give:

k 1622 N/m=
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Sample Problem 13.10 4

Reflect and Think

A common misconception in problems 
like this is assuming that the speed of 
the particle is zero at the top of the loop, 
rather than that the normal force is equal 
to or greater than zero. If the pellet had a 
speed of zero at the top, it would clearly 
fall straight down, which is impossible.



© 2019 McGraw-Hill Education.

Sample Problem 13.12 1

A satellite is launched in a direction 
parallel to the surface of the earth 
with a velocity of 36900 km/h from 
an altitude of 500 km.

Determine (a) the maximum 
altitude reached by the satellite, and 
(b) the maximum allowable error in 
the direction of launching if the 
satellite is to come no closer than 
200 km to the surface of the earth

Strategy:

• For motion under a conservative 
central force, the principles of 
conservation of energy and 
conservation of angular momentum 
may be applied simultaneously.

• Apply the principles to the points 
of minimum and maximum 
altitude to determine the 
maximum altitude.

• Apply the principles to the orbit 
insertion point and the point of 
minimum altitude to determine 
maximum allowable orbit insertion 
angle error.
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Sample Problem 13.12 2

Modeling and Analysis:
• Apply the principles of conservation of energy and 

conservation of angular momentum to the points of 
minimum and maximum altitude to determine the 
maximum altitude.

Conservation of energy:

1

2
12

1

0

2
02

1

r

GMm
mv

r

GMm
mvVTVT AAAA  

Conservation of angular momentum:

1

0
011100 r

r
vvmvrmvr 

Combining,

2
001

0

1

0

0
2

1

2
02

02
1 2

111
vr

GM

r

r

r

r

r

GM

r

r
v 





















   23122622

3
0

0

sm10398m1037.6sm81.9

sm1025.10hkm36900

km6870km500km6370







gRGM

v

r

66
1

6
1

104.60106.37altMax 

m108.66





-r

r
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Sample Problem 13.12 3

• Apply the principles to the orbit insertion point and the point 
of minimum altitude to determine maximum allowable orbit 
insertion angle error.

Conservation of energy:

min

2
max2

1

0

2
02

1
00 r

GMm
mv

r

GMm
mvVTVT AA 

Conservation of angular momentum:

min

0
00maxmaxmin000 sinsin

r

r
vvmvrmvr  

Combining and solving for sin 0 ,




5.1190

9801.0sin

0

0




 5.11error allowable

Reflect and Think:

• Space probes and other long-distance vehicles are designed 
with small rockets to allow for mid-course corrections. 
Satellites launched from the Space Station usually do not 
need this kind of fine-tuning.
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Group Problem Solving 5

A section of track for a roller coaster
consists of two circular arcs AB and CD
joined by a straight portion BC. The radius
of CD is 72 m. The car and its occupants,
of total mass 250 kg, reach Point A with
practically no velocity and then drop freely
along the track. Determine the normal
force exerted by the track on the car at
point D. Neglect air resistance and rolling
resistance.

Strategy:

• This is two part problem – you 
will need to find the velocity of 
the car using work-energy, and 
then use Newton’s second law 
to find the normal force.

• Draw a diagram with the car 
at points A and D, and 
define your datum.  Use 
conservation of energy to 
solve for vD.

• Draw FBD and KD of the car 
at point D, and determine the 
normal force using Newton’s 
second law.
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Group Problem Solving 6

Modeling and Analysis: 
Given:  vA= 0 m/s,  rCD= 72 m, m = 250 kg

Find:   ND

Define your datum, sketch the 
situation at points of interest

Datum

Use conservation of energy to find vD A A D DT V T V  

0 0A Av T 

2(250 kg)(9.81 m/s )(27m +18m)

110,362.5 N m
A AV Wy 
 

 2 2 21 1
250 125

2 2D D D DT mv v v  

Find TA

Find VA

Find TD

Find VD
0 0D Dy V 

Solve for vD

2125 110,362.5Dv 

29.714 m/sDv 
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Group Problem Solving 7

Draw FBD and KD at point D

Use Newton’s second law in the normal direction

n nF ma

W

ND

man

mat

2
D

D
v

N W m
R

 
    

 

229.714
(250)(9.81) 250

72DN
 

    

5520 NDN 

en

et
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Group Problem Solving 8

Reflect and Think:

What happens to the normal 
force at D if….

…we include friction?

a) ND gets larger

b) ND gets smaller

c) ND stays the same

…we move point A higher?

a) ND gets larger

b) ND gets smaller

c) ND stays the same

…the radius is smaller?

a) ND gets larger

b) ND gets smaller

c) ND stays the same
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Group Problem Solving 9

Reflect and Think:

What happens to the normal 
force at D if….

…we include friction?

a) ND gets larger

b) ND gets smaller

c) ND stays the same

…we move point A higher?
a) ND gets larger

b) ND gets smaller

c) ND stays the same

…the radius is smaller?

a) ND gets larger

b) ND gets smaller

c) ND stays the same
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Impulsive Motion 1

The thrust of a rocket acts 
over a specific time period 
to give the rocket linear 
momentum.

The impulse applied to the railcar by 
the wall brings its momentum to zero.   
Crash tests are often performed to 
help improve safety in different 
vehicles.

© Sandia National Laboratories/Getty Images RF
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Principle of Impulse and Momentum

• Dimensions of the impulse of 
a force are

force* time

• Units for the impulse of a 
force are

  smkgssmkgsN 2 

• From Newton’s second law,

   vmvm
dt

d
F


linear momentum

 

12

2

1

vmvmdtF

vmddtF
t

t











2211

21  force  theof impulse 
2

1

vmvm

FdtF
t

t












Imp

Imp

• The final momentum of the particle can be 
obtained by adding vectorially its initial 
momentum and the impulse of the force 
during the time interval.
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Impulsive Motion 2

• Force acting on a particle during a very 
short time interval that is large enough to 
cause a significant change in momentum 
is called an impulsive force.

• When impulsive forces act on a particle,

21 vmtFvm
 

• When a baseball is struck by a bat, contact 
occurs over a short time interval but force 
is large enough to change sense of ball 
motion.

• Nonimpulsive forces are forces for which

tF


is small and therefore, may be
neglected – an example of this is the weight 
of the baseball.
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Sample Problem 13.13 1

An automobile weighing 1800 kg is 
driven down a 5o incline at a speed of 
100 km/h when the brakes are applied, 
causing a constant total braking force of 
7000 N.  

Determine the time required for the 
automobile to come to a stop.

Strategy: 

• Apply the principle of impulse and 
momentum.  The impulse is equal to the 
product of the constant forces and the 
time interval.
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Sample Problem 13.13 2

Modeling and Analysis: 

• Apply the principle of impulse and 
momentum.  

2211 vmvm
  Imp 

Taking components parallel to the 
incline,

9.16s=t

Reflect and Think

• You could use Newton’s second law to solve this problem. First, you would 
determine the car’s deceleration, separate variables, and then integrate 
a = dv/dt to relate the velocity, deceleration, and time. You could not use 
conservation of energy to solve this problem, because this principle does not 
involve time.
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Sample Problem 13.16 1

A 120 g baseball is pitched with a 
velocity of 24 m/s.  After the ball is hit 
by the bat, it has a velocity of 36 m/s in 
the direction shown.  If the bat and ball 
are in contact for 0.015 s, determine the 
average impulsive force exerted on the 
ball during the impact.

Strategy:

• Apply the principle of impulse and 
momentum in terms of horizontal and 
vertical component equations.
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Sample Problem 13.16 2

Modeling and Analysis:

• Apply the principle of impulse and momentum in 
terms of horizontal and vertical component equations.

2211 vmvm
  Imp

x

y

x component equation:

y component equation:

( ) ( )413N 185.1N , 452 N= + =
  
F i j F
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Sample Problem 13.16 3

Reflect and Think:
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Sample Problem 13.17 1

A 10 kg package drops from a chute 
into a 24 kg cart with a velocity of 3 
m/s.  Knowing that the cart is initially 
at rest and can roll freely, determine (a)
the final velocity of the cart, (b) the 
impulse exerted by the cart on the 
package, and (c) the fraction of the 
initial energy lost in the impact.

Strategy:

• Apply the principle of impulse and 
momentum to the package-cart system 
to determine the final velocity.

• Apply the same principle to the package 
alone to determine the impulse exerted 
on it from the change in its momentum.
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Sample Problem 13.17 2

Modeling and Analysis

• Apply the principle of impulse and momentum to the package-cart system to 
determine the final velocity.

  2211 vmmvm cpp
  Imp

x components:  
     2

21

kg 25kg 1030cosm/s 3kg 10

030cos

v

vmmvm cpp





m/s 742.02 v
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Sample Problem 13.17 3

• Apply the same principle to the package alone to determine the impulse 
exerted on it from the change in its momentum.

2211 vmvm pp
  Imp

x components:

     2

21

kg 1030cosm/s 3kg 10

30cos

vtF

vmtFvm

x

pxp





sN56.18 tFx

y components:

   030sinm/s 3kg 10

030sin1





tF

tFvm

y

yp

sN15 tFy

    sN 9.23sN 51sN 56.1821   tFjitF


Imp
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Sample Problem 13.17 4

To determine the fraction of energy lost,

   
    

221 1
1 12 2

221 1
2 22 2

10 kg 3m s 45 J

10 kg 25 kg 0.742m s 9.63 J

p

p c

T m v

T m m v

  

    

786.0
J 45

J 9.63J 45

1

21 




T

TT

Reflect and Think:

Except in the purely theoretical case of a “perfectly elastic” collision, mechanical 
energy is never conserved in a collision between two objects, even though linear 
momentum may be conserved. Note that, in this problem, momentum was conserved in 
the x direction but was not conserved in the y direction because of the vertical impulse 
on the wheels of the cart. Whenever you deal with an impact, you need to use impulse-
momentum methods.
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Group Problem Solving 10

The jumper approaches the takeoff 
line from the left with a horizontal 
velocity of 10 m/s, remains in contact 
with the ground for 0.18 s, and takes
off at a 50 angle with a velocity of 12
m/s. Determine the average impulsive 
force exerted by the ground on his 
foot. Give your answer in terms of the 
weight W of the athlete.

Strategy:

• Draw impulse and momentum 
diagrams of the jumper.

• Apply the principle of impulse and 
momentum to the jumper to determine 
the force exerted on the foot.



© 2019 McGraw-Hill Education.

Group Problem Solving 11

Modeling and Analysis:

1 2

avg

Given : v 10 m / s, v 12m / s at 50 ,

Find : F in termsof W

  

Draw impulse and momentum diagrams of the jumper

Use the impulse momentum equation in y to find Favg

1 2( ) 0.18 sm t m t     v P W v
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Group Problem Solving 12

1 2( ) 0.18 savgm t m t     v F W v

Use the impulse momentum equation in x and y to find Favg

(10) ( )(0.18) (12)(cos 50 )

10 (12)(cos 50 )

(9.81)(0.18)

avg x

avg x

W W
F

g g

F W





   

 


0 ( )(0.18) (12)(sin 50 )

(12)(sin 50 )

(9.81)(0.18)

avg y

avg y

W
F W

g

F W W





   


 

1.295  6.21avg W W  F i  j
Reflect and Think:

Favg-x is positive, which means we 
guessed correctly (acts to the left)
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Concept Quiz 1

Car A and B crash into 
one another.  Looking 
only at the impact, which 
of the following 
statements are true? 

The total mechanical energy is the 
same before and after the impact True False

If car A weighs twice as much as car B, 
the force A exerts on car B is bigger 
than the force B exerts on car A. 

True False

The total linear momentum is the same 
immediately before and after the impact True False
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Concept Quiz 2

Car A and B crash into 
one another.  Looking 
only at the impact, which 
of the following 
statements are true? 

The total mechanical energy is the 
same before and after the impact True False

If car A weighs twice as much as car B, 
the force A exerts on car B is bigger 
than the force B exerts on car A. 

True False

The total linear momentum is the same 
immediately before and after the impact True False
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Impact 1

The coefficient of restitution is used to characterize the 
“bounciness” of different sports equipment.  The U.S. Golf 
Association limits the COR of golf balls at 0.83

© Ted Kinsman/Science Source 
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Impact 2

• Impact:  Collision between two bodies which 
occurs during a small time interval and during 
which the bodies exert large forces on each other.

• Line of Impact:  Common normal to the surfaces in 
contact during impact.

Direct Central Impact

• Central Impact:  Impact for which the mass centers 
of the two bodies lie on the line of impact;  
otherwise, it is an eccentric impact..

• Central Impact:  Impact for which the mass centers 
of the two bodies lie on the line of impact;  
otherwise, it is an eccentric impact..

Oblique Central Impact

• Oblique Impact:  Impact for which one or both of 
the bodies move along a line other than the line of 
impact.
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Direct Central Impact 1

• Bodies moving in the same straight line,

A BV V

• Upon impact the bodies undergo a 
period of deformation, at the end of 
which, they are in contact and moving at 
a common velocity.

• A period of restitution follows during 
which the bodies either regain their 
original shape or remain permanently 
deformed.

• Wish to determine the final velocities of 
the two bodies.  The total momentum of 
the two body system is preserved,

BBBBBBAA vmvmvmvm 

• A second relation between the final 
velocities is required.
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Direct Central Impact 2

• Period of deformation: umPdtvm AAA  

• Period of restitution: AAA vmRdtum  

10 











e

uv

vu

Pdt

Rdt

nrestitutio of tcoefficien e

A

A

• A similar analysis of particle B yields
B

B

vu

uv
 e





• Combining the relations leads to the desired 
second relation between the final velocities.

 BAAB vvevv 

• Perfectly plastic impact, e = 0:  vvv AB   vmmvmvm BABBAA 

• Perfectly elastic impact, e = 1:
Total energy and total momentum conserved.

BAAB vvvv 
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Oblique Central Impact 1

• Final velocities are 
unknown in magnitude 
and direction.  Four 
equations are required.

• No tangential impulse component; 
tangential component of momentum 
for each particle is conserved.

𝑣஺ ௧ = 𝑣஺
ᇱ

௧  𝑣஻ ௧ = 𝑣஻
ᇱ

௧

• Normal component of total 
momentum of the two particles is 
conserved.

𝑚஺ 𝑣஺ ௡ + 𝑚஻ 𝑣஻ ௡ = 𝑚஺ 𝑣஺
ᇱ

௡ + 𝑚஻ 𝑣஻
ᇱ

௡

• Normal components of relative 
velocities before and after impact 
are related by the coefficient of 
restitution.

𝑣஻
ᇱ

௡ − 𝑣஺
ᇱ

௡ = 𝑒 𝑣஺ ௡ − 𝑣஻ ௡
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Oblique Central Impact 2

• Block constrained to move along horizontal 
surface.

• Impulses from internal forces FF


  and  

along the n axis and from external force extF


exerted by horizontal surface and directed 
along the vertical to the surface.

• Final velocity of ball unknown in direction 
and magnitude and unknown final block 
velocity magnitude.  Three equations 
required.
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Oblique Central Impact 3

• Tangential momentum of ball is 
conserved.

𝑣஻ ௧ = 𝑣஻
ᇱ

௧

• Total horizontal momentum of block 
and ball is conserved.

𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻ ௫ = 𝑚஺ 𝑣஺
ᇱ + 𝑚஻ 𝑣஻

ᇱ
௫

• Normal component of relative 
velocities of block and ball are 
related by coefficient of 
restitution.

𝑣஻
ᇱ

௡ − 𝑣஺
ᇱ

௡ = 𝑒 𝑣஺ ௡ − 𝑣஻ ௡

• Note:  Validity of last expression does not follow from previous relation for 
the coefficient of restitution.  A similar but separate derivation is required. 
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Problems Involving Multiple Principles

Three methods for the analysis of kinetics problems:

• Direct application of Newton’s second law.

• Method of work and energy.

• Method of impulse and momentum.

Select the method best suited for the problem or part of a problem under 
consideration.
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Sample Problem 13.19 1

A ball is thrown against a frictionless, 
vertical wall.  Immediately before the 
ball strikes the wall, its velocity has a 
magnitude v and forms angle of 30°
with the horizontal.  Knowing that 
e = 0.90, determine the magnitude and 
direction of the velocity of the ball as 
it rebounds from the wall.

Strategy:

• Resolve ball velocity into components 
normal and tangential to wall.

• Impulse exerted by the wall is 
normal to the wall.  Component of 
ball momentum tangential to wall is 
conserved.

• Assume that the wall has infinite mass 
so that wall velocity before and after 
impact is zero.  Apply coefficient of 
restitution relation to find change  in 
normal  relative velocity between wall 
and ball, i.e., the normal ball velocity.
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Sample Problem 13.19 2

Modeling and Analysis:

• Resolve ball velocity into components parallel and 
perpendicular to wall.

vvvvvv tn 500.030sin866.030cos 

• Component of ball momentum tangential to wall is 
conserved.

vvv tt 500.0

• Apply coefficient of restitution relation with zero 
wall velocity.

 
  vvv

vev

n

nn

779.0866.09.0

00














 7.32
500.0

779.0
tan926.0

500.0779.0

1vv

vvv tn 

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Sample Problem 13.19 3

Reflect and Think:

Tests similar to this are done to make sure 
that sporting equipment––such as tennis 
balls, golf balls, and basketballs––are 
consistent and fall within certain 
specifications. Testing modern golf balls

and clubs shows that the coefficient of 
restitution actually decreases with 
increasing club speed (from about 0.84 at a 
speed of 145 km/hr to about 0.80 at club 
speeds of 210 km/hr).
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Sample Problem 13.20 1

The magnitude and direction of the 
velocities of two identical 
frictionless balls before they strike 
each other are as shown.  Assuming 
e = 0.9, determine the magnitude 
and direction of the velocity of each 
ball after the impact.

Strategy:

• Resolve the ball velocities into components 
normal and tangential to the contact plane.

• Tangential component of momentum for 
each ball is conserved.

• Total normal component of the momentum 
of the two ball system is conserved.  

• The normal relative velocities of the 
balls are related by the coefficient of 
restitution.

• Solve the last two equations simultaneously 
for the normal velocities of the balls after 
the impact.
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Sample Problem 13.20 2

Modeling and Analysis:

• Resolve the ball velocities into components normal and 
tangential to the contact plane.

𝑣஺ ௡ = 𝑣஺ cos 3 0° = +7.79
m

s
𝑣஺ ௧ = 𝑣஺ sin 3 0° = +4.5 

m

s

𝑣஻ ௡ = −𝑣஻ cos 6 0° = −6 
m

s
𝑣஻ ௧ = 𝑣஻ sin 6 0° = +10.39 

m

s

• Tangential component of momentum for each ball is 
conserved.

• Total normal component of the momentum of the two 
ball system is conserved.  
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Sample Problem 13.20 3

t

n

• The normal relative velocities of the balls are related by the 
coefficient of restitution.

• Solve the last two equations simultaneously for the normal 
velocities of the balls after the impact.
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Sample Problem 13.20 4

Reflect and Think:

• Rather than choosing your system to be 
both balls, you could have applied impulse-
momentum along the line of impact for 
each ball individually. 

• This would have resulted in two equations 
and one additional unknown, FΔt. To 
determine the impulsive force F, you 
would need to be given the time for the 
impact, Δt.
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Sample Problem 13.21 1

Ball B is hanging from an inextensible 
cord.  An identical ball A is released 
from rest when it is just touching the 
cord and acquires a velocity v0 before 
striking ball B.  Assuming perfectly 
elastic impact (e = 1) and no friction, 
determine the velocity of each ball 
immediately after impact.

Strategy:

• Determine orientation of impact line 
of action.

• The momentum component of ball A
tangential to the contact plane is 
conserved.

• The total horizontal momentum of 
the two ball system is conserved.

• The relative velocities along the line of 
action before and after the impact are 
related by the coefficient of restitution.

• Solve the last two expressions for the 
velocity of ball A along the line of 
action and the velocity of ball B which 
is horizontal.
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Sample Problem 13.21 2

Modeling and Analysis:

• Determine orientation of impact line of action.

• The momentum component of ball A
tangential to the contact plane is 
conserved.

 
  0

0

5.0

030sin

vv

vmmv

vmtFvm

tA

tA

AA





 

• The total horizontal (x component) 
momentum of the two ball system is 
conserved.

   
   
  0

0

433.05.0

30sin30cos5.00

30sin30cos0

vvv

vvv

vmvmvm

vmvmtTvm

BnA

BnA

BnAtA

BAA







 
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Sample Problem 13.21 3

• The relative velocities along the line of action before 
and after the impact are related by the coefficient of 
restitution.

        
 

  0

0

866.05.0

030cos30sin

vvv

vvv

vvevv

nAB

nAB

nBnAnAnB







• Solve the last two expressions for the velocity of 
ball A along the line of action and the velocity of 
ball B which is horizontal.

  00 693.0520.0 vvvv BnA 
















0

1
0

00

693.0

1.16301.46

1.46
5.0

52.0
tan721.0

520.05.0

vv

vv

vvv

B

A

ntA







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Sample Problem 13.21 4

Reflect and Think

Since e = 1, the impact between A and B is 
perfectly elastic. Therefore, rather than 
using the coefficient of restitution, you 
could have used the conservation of energy 
as your final equation.
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Sample Problem 13.22 1

A 30 kg block is dropped from a height 
of 2 m onto the 10 kg pan of a spring 
scale.  Assuming the impact to be 
perfectly plastic, determine the 
maximum deflection of the pan.  The 
constant of the spring is k = 20 kN/m.

Strategy:

• Apply the principle of conservation 
of energy to determine the velocity 
of the block at the instant of impact.

• Since the impact is perfectly plastic, 
the block and pan move together at 
the same velocity after impact.  
Determine that velocity from the 
requirement that the total momentum 
of the block and pan is conserved.

• Apply the principle of conservation of 
energy to determine the maximum 
deflection of the spring.
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Sample Problem 13.22 2

Modeling and Analysis:

• Apply principle of conservation of energy to 
determine velocity of the block at instant of impact.

   
    

     sm26.6030 J 5880

030

J 588281.9300

2
2
22

1

2211

2
2
22

12
22

1
2

11









AA

AAA

A

vv

VTVT

VvvmT

yWVT

• Determine velocity after impact from requirement that 
total momentum of the block and pan is conserved.

     
     sm70.41030026.630 33

322





vv

vmmvmvm BABBAA
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Sample Problem 13.22 3

Initial spring deflection due to 
pan weight:

  
m1091.4

1020

81.910 3
33





k

W
x B

• Apply the principle of conservation of energy to 
determine the maximum deflection of the spring.

    

  

  

   
    2

4
3

2
13

4

2
4

3
2
1

34

2
42

1
4

4

233
2
12

32
1

3

2
2
12

32
1

3

10201091.4392

1020392

0

J 241.01091.410200

J 4427.41030

xx

xxx

kxhWWVVV

T

kx

VVV

vmmT

BAeg

eg

BA



















   
m 230.0

10201091.43920241.0442

4

2
4

3
2
13

4

4433








x

xx

VTVT

m 1091.4m 230.0 3
34

 xxh m 225.0h
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Sample Problem 13.22 4

Reflect and Think:

The spring constant for this scale is pretty 
large, but the block is fairly massive and is 
dropped from a height of 2 m. From this 
perspective, the deflection seems reasonable. 

We included the spring in the system so we 
could treat it as an energy term rather than 
finding the work of the spring force.
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Group Problem Solving 13

A 2-kg block A is pushed up against a
spring compressing it a distance x= 0.1 m.
The block is then released from rest and
slides down the 20º incline until it strikes a
1-kg sphere B, which is suspended from a
1 m inextensible rope. The spring constant
is k=800 N/m, the coefficient of friction
between A and the ground is 0.2, the
distance A slides from the unstretched
length of the spring d = 1.5 m, and the
coefficient of restitution between A and B
is 0.8. When α = 40o, find (a) the speed of
B (b) the tension in the rope.

Strategy:

• This is a multiple step problem. 
Formulate your overall approach.

• Use work-energy to find the velocity 
of the block just before impact.

• Use conservation of momentum to 
determine the speed of ball B after 
the impact.

• Use work energy to find the 
velocity at α.

• Use Newton’s 2nd Law to 
find tension in the rope.
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Group Problem Solving 14

Modeling and Analysis:

   

A B

A

B rope

Given :m 2 kg m 1 kg,

k 800 N / m, μ 0.2,e 0.8

Find a V b T

 
  

• Use work-energy to find the velocity of 
the block just before impact

Determine the friction force acting on the block A 

Sum forces in the y-direction

0:yF 

cos 0AN m g  

Solve for N

𝑁 = 𝑚஺𝑔 cos 𝜃
= (2)(9.81) cos 2 0°
= 18.4368 N

𝐹௙ = 𝜇௞𝑁

= (0.2)(18.4368)
= 3.6874 N
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Group Problem Solving 15

Set your datum, use work-energy to determine vA at impact.

1 1 1 1 2 2 2 2( ) ( ) ( ) ( )e g e gT V V U T V V     

Determine values for each term.

𝑇ଵ = 0, (𝑉ଵ)௘ =
1

2
𝑘 𝑥ଵ

ଶ =
1

2
(800)(0.1)ଶ = 4.00 J

(𝑉ଵ)௚ = 𝑚஺𝑔ℎଵ = 𝑚஺𝑔(𝑥 + 𝑑) sin 𝜃 = (2)(9.81)(1.6) sin 2 0° = 10.7367 J

𝑈ଵ→ଶ = −𝐹௙(𝑥 + 𝑑) = −(3.6874)(1.6) = −5.8998  J

𝑇ଶ =
1

2
𝑚஺𝑣஺

ଶ =
1

2
(1)(𝑣஺

ଶ) = 1.000 𝑣஺
ଶ 𝑉ଶ = 0

Substitute into the Work-Energy equation and solve for vA

2
1 1 1 2 2 2: 0 4.00 10.7367 5.8998 1.000 0AT V U T V v        

2 2 28.8369 m /sAv  2.9727 m/sA v
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Group Problem Solving 16

• Use conservation of momentum to determine 
the speed of ball B after the impact

• Draw the impulse diagram

Note that the ball is constrained to move only 
horizontally immediately after the impact.

Apply conservation of 
momentum in the x direction

cos 0 cosA A A A B Bm v m v m v   

(1)(2)(2.9727)cos 20 2 cos 20 (1.00)   A Bv v  

Use the relative velocity/coefficient 
of restitution equation

( ) ( ) [( ) ( ) ]B n A n B n A nv v e v v   

cos [ 0]

cos 20 (0.8)(2.9727) (2  )
B A A

B A

v v e v

v v

   
   

Solve (1) and (2) simultaneously

1.0382 m/s          3.6356 m/sA Bv v  
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Group Problem Solving 17

• Use work energy to find the velocity at α

Set datum, use Work-Energy to determine vB at α=40°

1 1 1 1 2 2 2 2( ) ( ) ( ) ( )e g e gT V V U T V V     

Determine values for each term.

2
1 1

2
2 2 2 2

1
( ) 0

2
1

(1 cos )
2

B B

B B B

T m v V

T m v V m gh m gl 

 

   

Substitute into the Work-Energy equation and solve for vA

2 2
1 1 2 2 2

2 2
2

2

2 2

1 1
: ( ) 0 (1 cos )

2 2

( ) 2 (1 cos )

(3.6356) (2)(9.81)(1 cos 40 )

8.6274 m /s

B B B B

B

T V T V m v m v m g

v v gl





      

  

   



𝑣ଶ = 2.94 m/s
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Group Problem Solving 18

• Use Newton’s 2nd Law to find tension in the rope

• Draw your free-body 
and kinetic diagrams

• Sum forces in the normal direction

∑𝐹௡ = 𝑚஻ 𝑎௡:

cos

( cos )
B B n

B n

T m g m a

T m a g




 

 

• Determine normal acceleration

2
22

1.00 m

8.6274
8.6274 m/s

1.00n
v

a







  

• Substitute and solve
(1.0) (8.6274 9.81cos 40 )T    𝑇 = 16.14 N
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Concept Question 1

Compare the following statement to the problem you just solved.

If the coefficient of restitution is 
smaller than the 0.8 in the 
problem, the tension T will be… 

Smaller Bigger

If the rope length is smaller than 
the 1 m in the problem, the tension 
T will be… 

Smaller Bigger

If the coefficient of friction is 
smaller than 0.2 given in the 
problem, the tension T will be… 

Smaller Bigger

If the mass of A is smaller 
than the 2 kg given in the 
problem, the tension T will 
be… 

Smaller Bigger
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Concept Question 2

Compare the following statement to the problem you just solved.

If the coefficient of restitution is 
smaller than the 0.8 in the 
problem, the tension T will be… 

Smaller Bigger

If the rope length is smaller than 
the 1 m in the problem, the tension 
T will be… 

Smaller Bigger

If the coefficient of friction is 
smaller than 0.2 given in the 
problem, the tension T will be… 

Smaller Bigger

If the mass of A is smaller 
than the 2 kg given in the 
problem, the tension T will 
be… 

Smaller Bigger
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Summary

Approaches to Kinetics Problems

GF ma
 

2211 TUT  
2

1
1 2

t

t
mv F dt mv 

 
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End of Chapter 13


