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Engineers often need to analyze the dynamics of systems of 
particles – this is the basis for many fluid dynamics applications, 
and will also help establish the principles used in analyzing rigid 
bodies
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Introduction
• In the current chapter, you will study the motion of systems of particles.

• The effective force of a particle is defined as the product of it mass and 
acceleration. It will be shown that the system of external forces acting on a 
system of particles is equipollent with the system of miai for the various 
particles.

• The mass center of a system of particles will be defined and its motion 
described.

• Application of the work-energy principle and the impulse-momentum 
principle to a system of particles will be described. Result obtained are also 
applicable to a system of rigidly connected particles, i.e., a rigid body.

• Analysis methods will be presented for variable systems of particles, i.e., 
systems in which the particles included in the system change.
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Applying Newton’s Law and Momentum Principles 1

• Newton’s second law for each particle 
Pi in a system of n particles,
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• The system of external and internal 
forces on a particle is equivalent to 
the effective force of the particle.

• The system of external and internal 
forces acting on the entire system of 
particles is equivalent to the system 
of effective forces.
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Applying Newton’s Law and Momentum Principles 2

• Summing over all the elements,
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• Since the internal forces occur 
in equal and opposite collinear 
pairs, the resultant force and 
couple due to the internal 
forces are zero,
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• The system of external forces 
and the system of miai are 
equipollent by not equivalent.
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Linear & Angular Momentum

• Linear momentum of the system 
of particles,
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• Resultant of the external forces 
is equal to rate of change of 
linear momentum of the system 
of particles,
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• Angular momentum about fixed 
point O of system of particles,
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• Moment resultant about fixed 
point O of the external forces is 
equal to the rate of change of 
angular momentum of the system 
of particles,
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Motion of the Mass Center of a System of Particles

• Mass center G of system of particles is defined by position vector

r

which satisfies.
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• Differentiating twice,
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• The mass center moves as if the entire mass and all of the external forces 
were concentrated at that point.
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Angular Momentum About the Mass Center 1

• Consider the centroidal 
frame of reference 
Gx’y’z’, which translates 
with respect to the 
Newtonian frame Oxyz.

• The centroidal frame is not, 
in general, a Newtonian 
frame.

• The angular momentum of the system 
of particles about the mass center,
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• The moment resultant about G of the 
external forces is equal to the rate of 
change of angular momentum about G of 
the system of particles.
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Angular Momentum About the Mass Center 2

 
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• Angular momentum about G of 
the particles in their motion 
relative to the centroidal Gx’y’z’
frame of reference,
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• Angular momentum about G of 
particles in their absolute motion 
relative to the Newtonian Oxyz
frame of reference.
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• Angular momentum about G of the 
particle momenta can be calculated 
with respect to either the Newtonian 
or centroidal frames of reference.
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Conservation of Momentum
• If no external forces act on the 

particles of a system, then the linear 
momentum and angular momentum 
about the fixed point O are 
conserved.

0 0

constant  constant

   
 

 
    
 O O

O

L F H M

L H

• In some applications, such as 
problems involving central forces,

0 0

constant  constant

   
 

 
    
 O O

O

L F H M

L H

• Concept of conservation of 
momentum also applies to the 
analysis of the mass center motion,
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Concept Question 1

Three small identical spheres A, B, and C, 
which can slide on a horizontal, frictionless 
surface, are attached to three 200-mm-long 
strings, which are tied to a ring G. Initially, 
each of the spheres rotate clockwise about 
the ring with a relative velocity of vrel.

Which of the following is true?

a) The linear momentum of the system is in the positive x direction. 

b) The angular momentum of the system is in the positive y direction. 

c) The angular momentum of the system about G is zero.

d) The linear momentum of the system is zero.
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Concept Question 2

Three small identical spheres A, B, and C, 
which can slide on a horizontal, frictionless 
surface, are attached to three 200-mm-long 
strings, which are tied to a ring G. Initially, 
each of the spheres rotate clockwise about 
the ring with a relative velocity of vrel.

Which of the following is true?

a) The linear momentum of the system is in the positive x direction. 

b) The angular momentum of the system is in the positive y direction. 

c) The angular momentum of the system about G is zero.

d) The linear momentum of the system is zero.
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Sample Problem 14.2 1

A 10-kg projectile is moving with a 
velocity of 30 m/s when it explodes into 
2.5 and 7.5-kg fragments.  Immediately 
after the explosion, the fragments travel 
in the directions qA = 45o and qB = 30o.

Determine the velocity of each fragment.

Strategy:

• Since there are no external forces, the 
linear momentum of the system is 
conserved.

• Write separate component equations 
for the conservation of linear 
momentum.

• Solve the equations simultaneously 
for the fragment velocities.
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Sample Problem 14.2 2

Modeling and Analysis:

• Since there are no external forces, the 
linear momentum of the system is 
conserved.

x

y

• Write separate component equations for 
the conservation of linear momentum.

( ) ( ) ( )
0

02.5 7.5 10

+ =

+ =

  

  
A A B B

A B

m v m v mv

v v v

x components:

2.5𝑣஺ cos 4 5° + 7.5𝑣஻ cos 3 0° = 10 30

y components:

஺ ஻

• Solve the equations simultaneously for the 
fragment velocities.

62.2 m s 29.3 m s= =A Bv v
Reflect and Think:

As you might have predicted, the less massive fragment winds up with a larger 
magnitude of velocity and departs the original trajectory at a larger angle.
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Group Problem Solving 1

In a game of pool, ball A is moving with a 
velocity v0 when it strikes balls B and C, 
which are at rest and aligned as shown. 
Knowing that after the collision the three 
balls move in the directions indicated and 
that v0 = 4 m/s and vC= 2 m/s, 
determine the magnitude of the velocity of 
(a) ball A, (b) ball B.

Strategy:

• Since there are no external forces, the 
linear momentum of the system is 
conserved.

• Write separate component equations 
for the conservation of linear 
momentum.

• Solve the equations simultaneously 
for the pool ball velocities.

vC
vA

v0 vB
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Group Problem Solving 2

Write separate component equations for the conservation 
of linear momentum

(4)cos 30 sin 7.4 sin 49.3 (2)cos 45

0.12880 0.75813 2.0499
A B

A B

m mv mv m

v v

      
 

(4)sin 30 cos 7.4 cos 49.3 (2)sin 45

0.99167 0.65210 0.5858
A B

A B

m mv mv m

v v

      
 

0.12880 0.75813 2.0499A Bv v 

0.99167 0.65210 0.5858A Bv v 

x:

y:

Two equations, two unknowns - solve 

0.65210 (

+  0.75813 (

)

)

0.83581 1.78085Av 

2.13 m/sAv 

(1)

(2)

Sub into (1) or (2) to get vB
2.34 m/sBv 

Modeling And Analysis:
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Concept Question 3

Reflect and Think:

In a game of pool, ball A is 
moving with a velocity v0 when 
it strikes balls B and C, which 
are at rest and aligned as shown. 
After the impact, what is true 
about the overall center of 
mass of the system of three 
balls?

a) The overall system CG will move in the same direction as v0

b) The overall system CG will stay at a single, constant point

c) There is not enough information to determine the CG location
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Concept Question 4

Reflect and Think:

In a game of pool, ball A is 
moving with a velocity v0 when 
it strikes balls B and C, which 
are at rest and aligned as shown. 
After the impact, what is true 
about the overall center of 
mass of the system of three 
balls?

a) The overall system CG will move in the same direction as v0

b) The overall system CG will stay at a single, constant point

c) There is not enough information to determine the CG location
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Kinetic Energy
• Kinetic energy of a system of particles,

  21 1
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• Expressing the velocity in terms of the 
centroidal reference frame,

• Kinetic energy is equal to kinetic energy of 
mass center plus kinetic energy relative to the 
centroidal frame.
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Work-Energy Principle and 
Conservation of Energy

• Principle of work and energy can be applied to each particle Pi ,
𝑇ଵ + 𝑈ଵ→ଶ = 𝑇ଶ

ଵ→ଶ represents the work done by the internal forces 𝑓௜௝

and the resultant external force 𝐹⃗௜ acting on 𝑃𝑖.

• Principle of work and energy can be applied to the entire system by adding 
the kinetic energies of all particles and considering the work done by all 
external and internal forces.

• Although 𝑓௜௝ and 𝑓௝௜ are equal and opposite, the work of these forces will not, 
in general, cancel out.

• If the forces acting on the particles are conservative, the work is equal to the 
change in potential energy and

1 1 2 2T V T V+ = +

which expresses the principle of conservation of energy for the system of 
particles.
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Impulse-Momentum Principle

•The momenta of the particles at time t1 and the impulse of the forces from 
t1 to t2 form a system of vectors equipollent to the system of momenta of 
the particles at time t2 .

21

12

2

1

2

1

LdtFL

LLdtF

LF

t

t

t

t













 

 



21

12

2

1

2

1

HdtMH

HHdtM

HM

t

t
O

t

t
O

OO













 

 





© 2019 McGraw-Hill Education.

Sample Problem 14.5 1

Ball B, of mass mB, is suspended from 
a cord, of length l, attached to cart A, 
of mass mA, which can roll freely on a 
frictionless horizontal tract. While the 
cart is at rest, the ball is given an 
initial velocity

0 2 .v gl=

Determine (a) the velocity of B as it 
reaches it maximum elevation, and 
(b) the maximum vertical distance h
through which B will rise.

Strategy:

• With no external horizontal forces, 
it follows from the impulse-
momentum principle that the 
horizontal component of momentum 
is conserved. This relation can be 
solved for the velocity of B at its 
maximum elevation.

• The conservation of energy 
principle can be applied to relate 
the initial kinetic energy to the 
maximum potential energy. The 
maximum vertical distance is 
determined from this relation.
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Sample Problem 14.5 2

Modeling and Analysis:

• With no external horizontal forces, it follows from 
the impulse-momentum principle that the horizontal 
component of momentum is conserved. This relation 
can be solved for the velocity of B at its maximum 
elevation.

𝐿ଵ + ෍ න 𝐹⃗𝑑𝑡

௧మ

௧భ

= 𝐿ଶ

x component equation:

,1 ,1 ,2 ,2A A B B A A B Bm v m v m v m v+ = +

Velocities at positions 1 and 2 are

,1 ,1 0

,2 ,2 ,2 ,2

0A B

B A B A A

v v v

v v v v

= =

= + =
(velocity of B relative 
to A is zero at 
position 2)

( )0 ,2B A B Am v m m v= +

,2 ,2 0
B

A B
A B

m
v v v

m m
= =

+
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Sample Problem 14.5 3

• The conservation of energy principle can be applied 
to relate the initial kinetic energy to the maximum 
potential energy.

1 1 2 2T V T V  

Position 1 - Potential Energy:

Kinetic Energy:

Position 2 - Potential Energy:

Kinetic Energy:

1 AV m gl=

21
1 02 BT m v

2 A BV m gl m gh 

  21
2 ,22 A B AT m m v 

 2 21 1
0 ,22 2B A A B A A Bm v m gl m m v m gl m gh    

222 2
,20 0

02 2 2 2
AA B A B B

B B A B

vv vm m m m m
h v

g m g g g m m m

  
      

2 2
0 0

2 2
B

A B

v vm
h

g m m g
 


2
0

2
A

A B

vm
h

m m g



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Sample Problem 14.5 4

Strategy:

• Recalling that 2
0 2 ,v gl it follows from 

the last equation that ; this verifies 
that B stays below A, as assumed in the 
solution. 

• For ஺ ஻, the answers reduce to
2

2 2 0( ) ( ) 0  / 2 ;B Av v and h v g  

B oscillates as a simple pendulum with 
A fixed. 

• For ஺ ஻, they reduce to ஻ ଶ

஺ ଶ ଴ and ; A and B move 
with the same constant velocity ଴.
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Sample Problem 14.6 1

Ball A has initial velocity v0 = 3 m/s 
parallel to the axis of the table.  It hits 
ball B and then ball C which are both at 
rest.  Balls A and C hit the sides of the 
table squarely at A’ and C’ and ball B 
hits obliquely at B’.  

Assuming perfectly elastic collisions, 
determine velocities vA, vB, and vC with 
which the balls hit the sides of the table.

Strategy:

• There are four unknowns: vA, vB,x, vB,y, 
and vC.

• Write the conservation equations in 
terms of the unknown velocities and 
solve simultaneously.

• Solution requires four equations: 
conservation principles for linear 
momentum (two component equations), 
angular momentum, and energy.
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Sample Problem 14.6 2

ivv

jvivv

jvv

CC

yBxBB
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
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,,

Modeling and Analysis:
• There are four unknowns: vA, 

vB,x, vB,y, and vC.

• The conservation of momentum and energy equations,

yBACxB mvmvmvmvmv

LdtFL

,,0

21

0 

 


  2
2
12

,
2

,2
12

2
12

02
1

2211

CyBxBA mvvvmmvmv

VTVT





𝐻ை,ଵ + ෍ න𝑀ை𝑑𝑡 = 𝐻ை,ଶ

 − 0.6m 𝑚𝑣଴ = 2.4m 𝑚𝑣஺ − 2.1m 𝑚𝑣஻,௬ − 0.9m 𝑚𝑣஼

Solving the first three equations in terms of vC,

, ,3 6 3= = - = -A B y C B x Cv v v v v

Substituting into the energy equation,

( ) ( )2 2 2

2

2 3 6 3 9

20 78 72 0

- + - + =

- + =

C C C

C C

v v v

v v

( )
1.2 m s 2.4 m s

0.6 1.2 m s 1.342 m s

= =

= - =
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A C

B B

v v

v i j v
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Sample Problem 14.6 3

Reflect and Think:

• In a real situation, energy would not be 
conserved, and you would need to know 
the coefficient of restitution between the 
balls to solve this problem. We also 
neglected friction and the rotation of the 
balls in our analysis, which is often a 
poor assumption in pool or billiards. We 
discuss rigid-body impacts in Chapter 
17.
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Group Problem Solving 3

Three small identical spheres A, B, and C, which can slide on a horizontal, 
frictionless surface, are attached to three 200-mm-long strings, which are tied 
to a ring G. Initially, the spheres rotate clockwise about the ring with 
a relative velocity of 0.8 m/s and the ring moves along the x-axis with a 
velocity v0= (0.4 m/s)i. Suddenly, the ring breaks and the three spheres move 
freely in the xy plane with A and B following paths parallel to the y-axis at a 
distance a= 346 mm from each other and C following a path parallel to the x
axis. Determine (a) the velocity of each sphere, (b) the distance d.
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Group Problem Solving 4

Given: vArel= vBrel = vCrel = 0.8 
m/s, v0= (0.4 m/s)i , L= 200 
mm, a= 346 mm

Find: vA, vB, vC (after ring 
breaks), d

Strategy:

• There are four unknowns: vA, vB, vB, 
d.

• Solution requires four equations: 
conservation principles for linear 
momentum (two component 
equations), angular momentum, and 
energy.

• Write the conservation equations in 
terms of the unknown velocities and 
solve simultaneously.

Modeling and Analysis:

Apply the conservation of 
linear momentum equation 
– find L0 before ring breaks

0 (3m) 3 (0.4 ) m(1.2 m/s)m  L v i i

What is Lf (after ring 
breaks)?

f A B Cmv mv mv  L j j i
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Group Problem Solving 5

Set L0= Lf

(1.2 m/s) ( )C A Bm mv m v v  i i j

From the y components,

A Bv v

From the x components,
1.200 m/s 1.200 m/sC Cv  v

Apply the conservation of angular momentum equation

H0: 0( ) 3 3 (0.2m)(0.8 m/s) 0.480G relH mlv m m  

Hf: ( ) ( )G f A A B A CH mv x mv x a mv d     

Since vA= vB, and 
vC = 1.2 m/s, then:

0.480 0.346 A Cm mv mv d 

0.480 0.346 1.200

0.400 0.28833
A

A

v d

d v

 
 
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Group Problem Solving 6

Need another equation-
try work-energy, where 
T0 = Tf

T0:

 

2 2
0

2 2 2 2
0

1 1
(3m) 3

2 2

3 3
m [(0.4) (0.8) ] 1.200

2 2

rel

rel

T v mv

v v m m

    
 

    

Tf:

2 2 21 1 1

2 2 2f A B CT mv mv mv  

Substitute in known values:

2 2 2

2

1
(1.200) 1.200

2

0.480

A A

A

v v

v

    



0.69282 m/sA Bv v 

Solve for d:

0.400 0.28833(0.69282) 0.20024 md   

0.693 m/s               1.200 m/s

0.693 m/s              0.200 m

A C

B d

   

  

v v

v
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Variable Systems of Particles
• Kinetics principles established so far were derived for constant systems of 

particles, i.e., systems which neither gain nor lose particles.

• A large number of engineering applications require the consideration of 
variable systems of particles, example: hydraulic turbine, rocket engine, etc.

• For analyses, consider auxiliary systems which consist of the particles 
instantaneously within the system plus the particles that enter or leave the 
system during a short time interval. The auxiliary systems, thus defined, are 
constant systems of particles.
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Steady Stream of Particles. Applications

• Fluid Stream Diverted by Vane 
or Duct.

• Jet Engine.

• Fan.

• Helicopter.
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Steady Stream of Particles
• System consists of a steady stream of 

particles against a vane or through a 
duct.

• Define auxiliary system which includes 
particles which flow in and out over ∆t.

• The auxiliary system is a constant 
system of particles over Dt.

   

2

1

1 2

t

t

i i A i i B

L Fdt L

m v m v F t m v m v

 

    D  D   D   



  

  

   

 B A

dm
F v v

dt
 

  
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Streams Gaining or Losing Mass

• Define auxiliary system to include 
particles of mass m within system at time 
t plus the particles of mass Dm which 
enter the system over time interval Dt. 

• The auxiliary system is a constant system 
of particles.

2

1

1 2

t

t

L Fdt L 
  

    
   

a

a

mv m v F t m m v v

F t m v m v v m v

 D  D   D  D  
D  D  D   D D




   

    

dv dm
F m u

dt dt
dm

ma F u
dt

 

 





 

 



© 2019 McGraw-Hill Education.

Sample Problem 14.7 1

Grain falls onto a chute at the rate of 
120 kg/s.  It hits the chute with a 
velocity of 10 m/s and leaves with a 
velocity of 7.5 m/s.  The combined 
weight of the chute and the grain it 
carries is 3000 N with the center of 
gravity at G.

Determine the reactions at C and B.

Strategy:

• Define a system consisting of the mass 
of grain on the chute plus the mass that 
is added and removed during the time 
interval Dt.

• Apply the principles of conservation of 
linear and angular momentum for three 
equations for the three unknown 
reactions.
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Sample Problem 14.7 2

Modeling and Analysis:
• Define a system consisting of the 

mass of grain on the chute plus the 
mass that is added and removed 
during the time interval Dt.

• Apply the principles of conservation 
of linear and angular momentum for 
three equations for the three 
unknown reactions.

 
      DDD

DD

 

10sin

10cos
21

ByA

Bx

vmtBWCvm

vmtC

LdtFL


Solve for Cx, Cy, and B with

( )2340 N   886 1704  lb= = +
  

B C i j
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Sample Problem 14.7 3

Reflect and Think:
• This kind of situation is common in factory and 

storage settings. Being able to determine the 
reactions is essential for designing a proper 
chute that will support the stream safely. We can 
compare this situation to the case when there is 
no mass flow, which results in reactions of 
By = 1750 N, Cy = 1250 N, and Cx = 0 N.
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Group Problem Solving 7

The helicopter shown can produce a maximum downward air speed 
of 25 m/s in a 10-m-diameter slipstream. Knowing that the weight of 
the helicopter and its crew is 18 kN and assuming r = 1.21 kg/m3 for 
air, determine the maximum load that the helicopter can lift while 
hovering in midair.

Strategy:

• Calculate the time rate of change of the 
mass of the air.

• Determine the thrust generated by the 
airstream.

• Use this thrust to determine the 
maximum load that the helicopter can 
carry.
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Group Problem Solving 8

14 - 43

Modeling and Analysis:
Given:  vB = 25 m/s, W= 18,000 N, r = 1.21 kg/m3

Find: Max load during hover

Calculate the time rate of change (dm/dt) of the mass of the air.

Choose the relationship you will 
use to determine the thrust

( )B A
dm

F v v
dt

 

mass density volume density area length    

( )Bm A lrD  D ( )B BA v tr D

B B
m dm

A v
t dt

rD
 

D
AB is the area of the slipstream 
vB is the velocity in the slipstream. 
Well above the blade, vA ≈ 0 
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Group Problem Solving 9

Use statics to determine the maximum payload during hover

Use the relationship for dm/dt 
to determine the thrust

( )B A
dm

F v v
dt

 

0y H PF F W W    

WH WP

59,396 18,000 41,395 NP HW F W     W = 41,400 N 
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Concept Question 5

Reflect and Think:
In the previous problem with 
the maximum payload 
attached, what happens if the 
helicopter tilts (or pitches) 
forward?

a) The area of displaced air becomes smaller.
b) The volume of displaced air becomes smaller.
c) The helicopter will accelerate upward.
d) The helicopter will accelerate forward.
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Concept Question 6

Reflect and Think:
In the previous problem with 
the maximum payload 
attached, what happens if the 
helicopter tilts (or pitches) 
forward?

a) The area of displaced air becomes smaller.
b) The volume of displaced air becomes smaller.
c) The helicopter will accelerate upward.

d) The helicopter will accelerate forward.

*The helicopter will also accelerate downward
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End of Chapter 14


