
Vector Mechanics For Engineers: Dynamics

Twelfth Edition

PROPRIETARY MATERIAL © 2020 The McGraw Hill Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or distributed in any form
or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw Hill for their
individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

Copyright © 2020  McGraw Hill ,  All Rights Reserved.



Chapter 16Chapter 16

Plane Motion of Rigid Bodies: 
Forces and Accelerations
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Rigid Body Kinetics
The forces and moments applied to a robotic arm control the
resulting kinematics, and therefore the end position and
forces of the actuator at the end of the robot arm.
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Introduction
• In this chapter and in Chapters 17 and 18, we will be concerned 

with the kinetics of rigid bodies, that is relations between the 
forces acting on a rigid body, the shape and mass of the body, and 
the motion produced.

Results of this chapter will be restricted to:

• plane motion of rigid bodies, and

• rigid bodies consisting of plane slabs or bodies which are 
symmetrical with respect to the reference plane.

• Our approach will be to consider rigid bodies as made of large 
numbers of particles and to use the results of Chapter 14 for the 
motion of systems of particles. Specifically,

GG HMamF 
  and
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Equations of Motion for a Rigid Body
• Consider a rigid body acted upon 

by several external forces.

• Assume that the body is made of a 
large number of particles.

• For the motion of the mass center 
G of the body with respect to the 
Newtonian frame Oxyz,

amF




• For the motion of the body with 
respect to the centroidal frame 
Gx′y′z′,

GG HM 


• System of external forces is 
equipollent to the system consisting 
of . and GHam 
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Angular Momentum of a Rigid Body in 
Plane Motion

• Consider a rigid slab 
in plane motion.

• Angular momentum of the slab may be 
computed by
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• After differentiation,

  IIHG 

• Results are also valid for plane motion of bodies 
which are symmetrical with respect to the 
reference plane.

• Results are not valid for asymmetrical bodies or 
three-dimensional motion.
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Plane Motion of a Rigid Body
• Motion of a rigid body in plane motion is 

completely defined by the resultant and 
moment resultant about G of the external 
forces.

IMamFamF Gyyxx  

• The external forces and the collective 
effective forces of the slab particles are 
equipollent (reduce to the same resultant and 
moment resultant) and equivalent (have the 
same effect on the body).

• The external forces acting on a rigid body are 
equivalent to the inertial terms of the various 
particles forming the body.

• The most general motion of a rigid body that 
is symmetrical with respect to the reference 
plane can be replaced by the sum of a 
translation and a centroidal rotation.
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A Remark on the Axioms of the 
Mechanics of Rigid Bodies

• The forces FF

 and act at different points 

on a rigid body but have the same 
magnitude, direction, and line of action. 

• The forces produce the same moment about 
any point and are therefore, equipollent 
external forces.

• This proves the principle of transmissibility 
whereas it was previously stated as an 
axiom.
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Problems Involving the Motion of a 
Rigid Body

• The fundamental relation between the 
forces acting on a rigid body in plane 
motion and the acceleration of its mass 
center and the angular acceleration of the 
body is illustrated in a free-body-diagram 
equation.

• These techniques may also be applied to 
problems involving plane motion of 
connected rigid bodies by drawing a free-
body-diagram equation for each body and 
solving the corresponding equations of 
motion simultaneously.
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Free Body Diagrams and Kinetic 
Diagrams 1

Include your 
positive z-axis 
direction too

The free body diagram is the same as you have done in statics 
and in Chapter 13; we will add the kinetic diagram in our 
dynamic analysis.

1. Isolate the body of interest (free body) 

2. Draw your axis system (Cartesian, polar, path) 

3. Add in applied forces (example: weight)

4. Replace supports with forces (example: tension force) 

5. Draw appropriate dimensions (angles and distances)
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Free Body Diagrams and Kinetic 
Diagrams 2

Put the inertial terms for the body of interest on the kinetic 
diagram.

1. Isolate the body of interest (free body) 

2. Draw in the mass times acceleration of the particle; if unknown, 
do this in the positive direction according to your chosen axes. 
For rigid bodies, also include the rotational term, IG.  

            m F a

        G I M
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Free Body Diagrams and Kinetic 
Diagrams 3

Draw the FBD and KD for 
the bar AB of mass m. A 
known force P is applied at 
the bottom of the bar. 
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Free Body Diagrams and Kinetic 
Diagrams 4

1. Isolate body
2. Axes

3. Applied forces

4. Replace supports with forces

5. Dimensions
6. Kinetic diagram
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Free Body Diagrams and Kinetic 
Diagrams 5

A drum of 100 mm radius is 
attached to a disk of 200 mm 
radius.  The combined drum and 
disk had a combined mass of 5 kg.  
A cord is attached as shown, and a 
force of magnitude P=25 N is 
applied.  The coefficients of static 
and kinetic friction between the 
wheel and ground are ms= 0.25 and 
mk= 0.20, respectively.  Draw the 
FBD and KD for the wheel.
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Free Body Diagrams and Kinetic 
Diagrams 6

xma

yma

I 

P

F

W

N x

y

=

1.  Isolate body
2.  Axes

3.  Applied forces

4.  Replace supports with forces

5.  Dimensions
6.  Kinetic diagram

100 
mm

200 mm
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Free Body Diagrams and Kinetic 
Diagrams 7

The ladder AB slides down the 
wall as shown. The wall and floor 
are both rough. Draw the FBD 
and KD for the ladder.
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Free Body Diagrams and Kinetic 
Diagrams 8

1. Isolate body
2. Axes

3. Applied forces

4. Replace supports with forces

5. Dimensions
6. Kinetic diagram
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Sample Problem 16.1 1

At a forward speed of 10 m/s, the truck 
brakes were applied, causing the wheels 
to stop rotating.  It was observed that the 
truck to skidded to a stop in 7 m.

Determine the magnitude of the normal 
reaction and the friction force at each 
wheel as the truck skidded to a stop.

Strategy:

• Calculate the acceleration during the 
skidding stop by assuming uniform 
acceleration.

• Apply the three corresponding scalar 
equations to solve for the unknown 
normal wheel forces at the front and rear 
and the coefficient of friction between 
the wheels and road surface.

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces.
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Sample Problem 16.1 2

0

m
10 7m

s
v x= =

Modeling and Analysis:

• Calculate the acceleration during the skidding stop 
by assuming uniform acceleration.

2

m
7.14

s
a =

• Draw a free-body-diagram equation expressing the 
equivalence of the external  and inertial terms.

• Apply the corresponding scalar equations. 

0 WNN BA
  

effyy FF

஺ ஻

௞ ஺ ஻

௞

௞

   effxx FF
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Sample Problem 16.1 3

𝑁஺ = 𝑊 − 𝑁஻ = 0.341𝑊

𝑁௥௘௔௥ =
1

2
𝑁஺ =

1

2
0.341𝑊 𝑁௥௘௔௥ = 0.1705𝑊

𝑁௙௥௢௡௧ =
1

2
𝑁௏ =

1

2
0.659𝑊 𝑁௙௥௢௡௧ = 0.3295𝑊

𝐹௥௘௔௥ = 𝜇௞𝑁௥௘௔௥ = 0.728 0.1705𝑊

𝐹௥௘௔௥ = 0.1241𝑊

𝐹௙௥௢௡௧ = 𝜇௞𝑁௙௥௢௡௧ = 0.728 0.3295𝑊

𝐹௙௥௢௡௧ = 0.240𝑊

   effAA MM



© 2019 McGraw-Hill Education.

Sample Problem 16.1 4

Reflect and Think:

• Note that even though the angular 
acceleration of the van is zero, the sum 
of the moments about point A is not 
equal to zero, since from the kinetic 
diagram, produces a moment about 
A.

• Rather than taking moments about point 
A, you also could have chosen to take 
moments about the center of mass, G. In 
this case, the sum of the moments would 
have been equal to zero. You only get 
three independent equations for a rigid 
body in plane motion: ௫, ௬, and 
one moment equation.
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Sample Problem 16.3 1

The thin plate of mass 8 kg is 
held in place as shown.  

Neglecting the mass of the 
links, determine immediately 
after the wire has been cut (a) 
the acceleration of the plate, and 
(b) the force in each link.

Strategy:

• Note that after the wire is cut, all 
particles of the plate move along 
parallel circular paths of radius 150 
mm.  The plate is in curvilinear 
translation.

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces.

• Resolve into scalar component 
equations parallel and perpendicular to 
the path of the mass center.

• Solve the component equations and the 
moment equation for the unknown 
acceleration and link forces.
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Sample Problem 16.3 2

Modeling and Analysis:

• Note that after the wire is cut, all particles of the 
plate move along parallel circular paths of radius 
150 mm. The plate is in curvilinear translation.

• Draw the free-body-diagram equation expressing 
the equivalence of the external and effective 
forces.

• Resolve the diagram equation into components 
parallel and perpendicular to the path of the mass 
center.

tt amF 




30cos

30cos

mg

amW

   30cosm/s81.9 2a
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Sample Problem 16.3 3

• Solve the component equations and the moment 
equation for the unknown acceleration and link 
forces.

IMG 
     
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𝐹஺ா = 47.9N 

 N9.471815.0DFF 𝐹஽ி = 8.70N 
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Sample Problem 16.3 4

Reflect and Think:

• If AE and DF had been cables rather than links, 
the answers you just determined indicate that 
DF would have gone slack (that is you can’t 
push on a rope), since the analysis showed that 
it would be in compression. Therefore, the 
plate would not be undergoing curvilinear 
translation, but it would have been undergoing 
general plane motion. 

• It is important to note that that there is always 
more than one way to solve problems like 
this, since you can choose to take moments 
about any point you wish. In this case, you 
took them about G, but you could have also 
chosen to take them about A or D.
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Sample Problem 16.4 1

A pulley of mass 6 kg and having a radius 
of gyration of 200 mm is connected to two 
blocks as shown.

Assuming no axle friction, determine the 
angular acceleration of the pulley and the 
acceleration of each block.

Strategy:

• Determine the direction of rotation by 
evaluating the net moment on the 
pulley due to the two blocks.

• Relate the acceleration of the blocks to 
the angular acceleration of the pulley.

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces on the 
complete pulley plus blocks system.

• Solve the corresponding moment 
equation for the pulley angular 
acceleration.
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Sample Problem 16.4 2

• Relate the acceleration of the blocks to the angular 
acceleration of the pulley.

note:

Modeling and Analysis:

• Determine the direction of rotation by evaluating the net 
moment on the pulley due to the two blocks.

rotation is counterclockwise.
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Sample Problem 16.4 3

• Draw the free-body-diagram equation expressing the 
equivalence of the external and effective forces on the 
complete pulley and blocks system.

   effGG MM

• Solve the corresponding moment equation for the pulley 
angular acceleration.

𝛼 = 2.41rad/sଶ

Then,

(RHS from Kinetic Diagram)

𝑎஺ = 0.603m/sଶ

𝑎஻ = 0.362m/sଶ
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Sample Problem 16.4 4

Reflect and Think:

• You could also solve this problem by 
considering the pulley and each block 
as separate systems, but you would 
have more resulting equations. You 
would have to use this approach if you 
wanted to know the forces in the 
cables.
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Sample Problem 16.5 1

A cord is wrapped around a 
homogeneous disk of mass 15 
kg. The cord is pulled upwards 
with a force T = 180 N.

Determine: (a) the acceleration 
of the center of the disk, (b) the 
angular acceleration of the disk, 
and (c) the acceleration of the 
cord.

Strategy:

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces on the 
disk.

• Solve the three corresponding scalar 
equilibrium equations for the 
horizontal, vertical, and angular 
accelerations of the disk.

• Determine the acceleration of the cord 
by evaluating the tangential 
acceleration of the point A on the disk.
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Sample Problem 16.5 2

Modeling and Analysis:

• Draw the free-body-diagram equation expressing 
the equivalence of the external and effective 
forces on the disk.

• Solve the three scalar equilibrium equations.

x xF ma 
xam0 0xa

y yF ma 
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Sample Problem 16.5 3

0xa 22.19 m sya  

2srad0.48

• Determine the acceleration of the cord by 
evaluating the tangential acceleration of 
the point A on the disk.

   
  22 srad48m5.0sm19.2 


tGAtAcord aaaa



226.2m scorda  

Reflect and Think:

• The angular acceleration is clockwise, as 
we would expect. A similar analysis 
would apply in many practical situations, 
such as pulling wire off a spool or paper 
off a roll. In such cases, you would need 
to be sure that the tension pulling on the 
disk is not larger than the tensile strength 
of the material.
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Sample Problem 16.6 1

A uniform sphere of mass m and 
radius r is projected along a rough 
horizontal surface with a linear 
velocity v0. The coefficient of kinetic 
friction between the sphere and the 
surface is mk.

Determine: (a) the time t1 at which the 
sphere will start rolling without 
sliding, and (b) the linear and angular 
velocities of the sphere at time t1.

Strategy:

• Draw the free-body-diagram 
equation expressing the 
equivalence of the external and 
effective forces on the sphere.

• Solve the three corresponding 
scalar equilibrium equations for 
the normal reaction from the 
surface and the linear and angular 
accelerations of the sphere.

• Apply the kinematic relations for 
uniformly accelerated motion to 
determine the time at which the 
tangential velocity of the sphere at 
the surface is zero, that is when the 
sphere stops sliding.
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Sample Problem 16.6 2

Modeling and Analysis:

• Draw the free-body-diagram equation expressing 
the equivalence of the external and effective 
forces on the disk.

• Solve the three scalar equilibrium equations.

y yF ma 
0WN mgWN 

x xF ma 




mg

amF

km
ga km

IMG 

   m


2

3
2 mrrmg

IFr

k 



r

gkm
2

5


Note: As long as the sphere both rotates and slides, its linear and angular motions are 
uniformly accelerated.
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Sample Problem 16.6 3

ga km

r

gkm
2

5


• Apply the kinematic relations for uniformly 
accelerated motion to determine the time at 
which the tangential velocity of the sphere at 
the surface is zero, that is when the sphere stops 
sliding.
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Sample Problem 16.6 4

Reflect and Think:

• You could use this type of analysis to 
determine how long it takes a bowling ball 
to begin to roll without slip or to see how the 
coefficient of friction affects this motion. 

• Instead of taking moments about the center 
of gravity, you could have chosen to take 
moments about point C, in which case your 
third equation would have been

0C C
M H mar I   

 
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Group Problem Solving 1

Knowing that the coefficient of 
static friction between the tires 
and the road is 0.80 for the 
automobile shown, determine the 
maximum possible acceleration 
on a level road, assuming rear-
wheel drive

Strategy:

• Draw the free-body-diagram and 
kinetic diagram showing the 
equivalence of the external forces 
and inertial terms.

• Write the equations of motion for 
the sum of forces and for the sum 
of moments.

• Apply any necessary kinematic 
relations, then solve the resulting 
equations.
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Group Problem Solving 2

Modeling and Analysis:

• Given:  rear wheel drive, 
dimensions as shown, m= 0.80

• Find:  Maximum acceleration

• Draw your FBD and KD

x

y

xma

I 
yma

=

x xF ma y yF ma
R xF ma 0R FN N mg  

• Set up your equations of motion, 
realizing that at maximum acceleration,  
may and  will be zero

G GM I 
(1.5) (1) (0.5) 0R F RN N F   
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Group Problem Solving 3

• Solve the resulting equations: 4 unknowns are FR, max, NF and NR

(1) (2) (3)

(4)

Solving this equation, the masses cancel out and you get:

(1.5) (1) (0.5) 0R F RN N F   

0R FN N mg  R xF ma R RF Nm

x
R

ma
N

m
(1)→(3) (5)

x
F R

ma
N mg N mg

m
    (6)

(5)→(2)

(1) and (5) and (6) →(4)

     1.5 1 0.5 0x x
x

ma ma
mg ma

m m
 

      

3.74 m/sxa 
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Group Problem Solving 4

Reflect and Think:

• Alternatively, you could have chosen to sum moments about the front wheel

x

y

xma

I 
yma

=

F GM I mad  
(2.5) (1) 0 (5)R xN mg ma   

• You can now use this equation with those on the previous slide to solve for 
the acceleration
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Concept Question 1

The thin pipe P and the uniform cylinder C have the same outside radius 
and the same mass. If they are both released from rest, which of the 
following statements is true?

a) The pipe P will have a greater acceleration

b) The cylinder C will have a greater acceleration

c) The cylinder and pipe will have the same acceleration
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Concept Question 2

The thin pipe P and the uniform cylinder C have the same outside radius 
and the same mass. If they are both released from rest, which of the 
following statements is true?

a) The pipe P will have a greater acceleration

b) Answer: The cylinder C will have a greater acceleration

c) The cylinder and pipe will have the same acceleration
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Constrained Plane Motion 1

The reactions of the automobile 
crankshaft bearings depend on the 
mass, mass moment of inertia, and 
the kinematics of the crankshaft.

The forces one the wind turbine 
blades are also dependent on mass, 
mass moment of inertia, and 
kinematics.

©Loraks/ Getty Images RF
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Constrained Plane Motion 2

Most engineering applications involve rigid 
bodies which are moving under given 
constraints, example: cranks, connecting 
rods, and non-slipping wheels.

Constrained plane motion: motions with 
definite relations between the components of 
acceleration of the mass center and the 
angular acceleration of the body.

Solution of a problem involving constrained 
plane motion begins with a kinematic 
analysis.

Example: given q, ω, and α, find P, NA, and NB.
• kinematic analysis yield . and yx aa

• We can then find P, NA, and NB by solving 
the appropriate equations.
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Constrained Motion: Noncentroidal 
Rotation
• Noncentroidal rotation: motion of a body 

is constrained to rotate about a fixed axis 
that does not pass through its mass center.

• Kinematic relation between the motion of 
the mass center G and the motion of the 
body about G,

2 rara nt 

• The kinematic relations are used to 
eliminate nt aa  and from the method of 
dynamic equilibrium.
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Constrained Plane Motion: Rolling 
Motion

• For a balanced disk constrained to roll without 
sliding, 

q rarx 
• Rolling, no sliding:

NF sm ra 
Rolling, sliding impending:

NF sm ra 
Rotating and sliding:

NF km ,  independenta r
• For the geometric center of an unbalanced disk,

raO 
The acceleration of the mass center,

   
nOGtOGO

OGOG

aaa

aaa







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Sample Problem 16.7 1

The portion AOB of the mechanism is 
actuated by gear D and at the instant 
shown has a clockwise angular velocity 
of 8 rad/s and a counter clockwise 
angular acceleration of 40 rad/s squared.  

Determine: a) tangential force exerted by 
gear D, and b) components of the 
reaction at shaft O.

Strategy:

• Draw the free-body-equation 
for AOB, expressing the 
equivalence of the external and 
effective forces.

• Evaluate the external forces due 
to the weights of gear E and 
arm OB and the effective forces 
associated with the angular 
velocity and acceleration.

• Solve the three scalar equations 
derived from the free-body-
equation for the tangential force 
at A and the horizontal and 
vertical components of reaction 
at shaft O.
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Sample Problem 16.7 2

kg 3

mm 85

kg 4






OB

E

E

m

k

m 2srad40

rad/s 8

22 /8)/40)(200.0()( smsradmra tOB  
222 /8.12)/8)(200.0()( smsradmra nOB  

Modeling and Analysis:
• Draw the free-body-equation for AOB.

• Evaluate the external forces due to the weights of 
gear E and arm OB and the effective forces.

  
   N4.29sm81.9kg3

N2.39sm81.9kg4
2

2





OB

E

W

W

    
mN156.1

srad40m085.0kg4 222


  EEE kmI

       
N0.24

srad40m200.0kg3 2



 rmam OBtOBOB

       
N4.38

srad8m200.0kg3 22



 rmam OBnOBOB

      
mN600.1

srad40m.4000kg3 22
12
12

12
1



  LmI OBOB
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Sample Problem 16.7 3

N4.29

N2.39




OB

E

W

W

mN156.1 EI

  N0.24tOBOB am

  N4.38nOBOB am

mN600.1 OBI

• Solve the three scalar equations derived from the 
free-body-equation for the tangential force at A
and the horizontal and vertical components of 
reaction at O.

OO HM 
     

   mN600.1m200.0N0.24mN156.1

m200.0m120.0



  OBtOBOBE IamIF

63.0 NF  

x xF ma  
  N0.24 tOBOBx amR

24.0 NxR  

y yF ma  
 

N4.38N4.29N2.39N0.63 



y

OBOBOBEy

R

amWWFR

170.0 NyR  
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Sample Problem 16.7 4

Reflect and Think:

• When you drew your kinetic diagram, 
you put your inertia terms at the 
center of mass for the gear and for the 
rod.

• Alternatively, you could have found 
the center of mass for the system and 
put the vectors IAOBα, mAOBax and 
mAOBay on the diagram. 

• Finally, you could have found an 
overall IO for the combined gear and 
rod and used Equation 16.8 to solve 
for force F.
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Sample Problem 16.9 1

A sphere of weight W is 
released with no initial velocity 
and rolls without slipping on the 
incline.

Determine: a) the minimum 
value of the coefficient of 
friction, b) the velocity of G
after the sphere has rolled 10 ft
and c) the velocity of G if the 
sphere were to move 10 ft down 
a frictionless incline.

Strategy:

• Draw the free-body-equation for the 
sphere, expressing the equivalence of the 
external and effective forces.

• With the linear and angular accelerations 
related, solve the three scalar equations 
derived from the free-body-equation for 
the angular acceleration and the normal 
and tangential reactions at C.

• Calculate the friction coefficient required 
for the indicated tangential reaction at C.

• Calculate the velocity after 10 ft of 
uniformly accelerated motion.

• Assuming no friction, calculate the linear 
acceleration down the incline and the 
corresponding velocity after 10 ft.
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Sample Problem 16.9 2

ra 

Modeling and Analysis:

• Draw the free-body-equation for the sphere,
expressing the equivalence of the external and 
effective forces.

• With the linear and angular accelerations related, 
solve the three scalar equations derived from the 
free-body-equation for the angular acceleration 
and the normal and tangential reactions at C.

𝑊 sin 𝜃 𝑟 = 𝑚𝑎̄ 𝑟 + 𝐼ሜ𝛼

= 𝑚𝑟𝛼 𝑟 +
2

5
𝑚𝑟ଶ 𝛼

=
𝑊

𝑔
𝑟𝛼 𝑟

𝛼 =
5𝑔 sin 𝜃

7𝑟

𝑎̄ = 𝑟𝛼 =
5𝑔 sin 3 0°

7

=
5 9.81 m/sଶ sin 3 0°

7
𝑎̄ = 3.50m/sଶ

 damIMC 
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Sample Problem 16.9 3

r

g

7

sin5 q 

2sft50.11 ra

• Solve the three scalar equations derived from the 
free-body-equation for the angular acceleration 
and the normal and tangential reactions at C.

xx amF 

WWF

g

g

W

amFW

143.030sin
7

2

7

sin5

sin






q

q

yy amF 
WWN

WN

866.030cos

0cos


 q

• Calculate the friction coefficient required for the 
indicated tangential reaction at C.

W

W

N

F

NF

s

s

866.0

143.0




m

m

165.0sm
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Sample Problem 16.9 4

r

g

7

sin5 q 

ଶ

• Calculate the velocity after 10 ft of uniformly 
accelerated motion.

( )
( )( )

2 2
0 0

2

2

0 2 3.504 m s 3 m

v v a x x= + -

= +

4.59 m sv =


• Assuming no friction, calculate the linear 
acceleration and the corresponding velocity 
after 3 m.

IM G  00  I

xx amF  𝑊 sin 𝜃 = 𝑚𝑎̄ =
𝑊

𝑔
𝑎̄

𝑎̄ = 9.81 m/sଶ sin 3 0° = 4.905 m/sଶ 

( )
( )( )

2 2
0 0

2

2

0 2 4.905 m s 3 m

v v a x x= + -

= +
5.42 m sv =


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Sample Problem 16.9 5

Reflect and Think:

• Note that the sphere moving down a 
frictionless surface has a higher velocity 
than the rolling sphere, as you would 
expect. It is also interesting to note that 
the expression you obtained for the 
acceleration of the center of mass, that 
is, 5 ( ) / 7,a g sin q is independent of the 
radius of the sphere and the mass of the 
sphere.

• This means that any two solid spheres, as 
long they are rolling without sliding, have 
the same linear acceleration.
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Sample Problem 16.10 1

A cord is wrapped around the 
inner hub of a wheel and 
pulled horizontally with a 
force of 200 N. The wheel has 
a mass of 50 kg and a radius of 
gyration of 70 mm. Knowing 
μs = 0.20 and μk = 0.15, 
determine the acceleration of 
G and the angular acceleration 
of the wheel.

Strategy:

• Draw the free-body-equation for the 
wheel, expressing the equivalence of 
the external and effective forces.

• Assuming rolling without slipping and 
therefore, related linear and angular 
accelerations, solve the scalar 
equations for the acceleration and the 
normal and tangential reactions at the 
ground.

• Compare the required tangential 
reaction to the maximum possible 
friction force.

• If slipping occurs, calculate the kinetic 
friction force and then solve the scalar 
equations for the linear and angular 
accelerations.
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Sample Problem 16.10 2

  
2

22

mkg245.0

m70.0kg50



 kmI

Assume rolling without slipping,

 


m100.0
 ra

Modeling and Analysis:
• Draw the free-body-equation for the wheel,.

• Assuming rolling without slipping, solve the scalar 
equations for the acceleration and ground reactions.

 damIMC 

    
     

  

2 2

2

2 2

200N 0.040 m 0.100 m

8.0 N m 50 kg 0.100 m 0.245kg m

10.74 rad s

0.100 m 10.74 rad s 1.074 m s

ma I

a



 



 

   

 

  

x xF m a 
   2200 N 50kg 1.074m s

146.3N

F ma

F

  

  

y yF ma 

  2

0

50kg 1.074 m s 490.5 N

N W

N mg

 

    
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Sample Problem 16.10 3

Without slipping, 

F = −146.3N       N = 490.5N

• Compare the required tangential reaction to 
the maximum possible friction force.

  N1.98N5.49020.0max  NF sm

F > Fmax , rolling without slipping is 
impossible.

• Calculate the friction force with slipping 
and solve the scalar equations for linear and 
angular accelerations.

  N6.73N5.49015.0  NFF kk m

x xF m a 
 akg50N6.73N200  22.53m sa  

IM G 
     

 
2

2

srad94.18

mkg245.0

m060.0.0N200m100.0N6.73











2srad94.18
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Sample Problem 16.10 4

Reflect and Think:

• The wheel has larger linear and angular 
accelerations under conditions of 
rotating while sliding than when rolling 
without sliding.
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Sample Problem 16.12 1

The extremities of a 1.2-m rod of 
mass 25 kg can move freely and 
with no friction along two straight 
tracks.  The rod is released with no 
velocity from the position shown.

Determine:  a) the angular 
acceleration of the rod, and b) the 
reactions at A and B.

Strategy:

• Based on the kinematics of the constrained 
motion, express the accelerations of A, B, 
and G in terms of the angular acceleration.

• Draw the free-body-equation for the rod,
expressing the equivalence of the 
external and effective forces.

• Solve the three corresponding scalar 
equations for the angular acceleration and 
the reactions at A and B.
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Sample Problem 16.12 2

Modeling and Analysis:

• Based on the kinematics of the constrained motion, 
express the accelerations of A, B, and G in terms of 
the angular acceleration.

Express the acceleration of B as

ABAB aaa
 

With the corresponding vector triangle 
and the law of signs yields

The acceleration of G is now obtained from

AGAG aaaa


 2  where AGa

Resolving into x and y components,



© 2019 McGraw-Hill Education.

Sample Problem 16.12 3

• Draw the free-body-equation for the rod, expressing 
the equivalence of the external and effective forces.

• Solve the three corresponding scalar equations for the 
angular acceleration and the reactions at A and B.

   effEE MM

   effxx FF

45o

  
effyy FF

𝑅஻ sin 45௢ = 33.5𝛼 = 33.5 × 2.334
𝑅஻ = 110.58𝑁

ଶ

𝑅஺ + 110.58 cos 45௢ − 245.25 = (−13)(2.234)

஻

஺
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Sample Problem 16.12 4

Reflect and Think:

• For the kinematics, you could have used 
the vector algebra approach rather than the 
method demonstrated in this example.

• Using the vector algebra approach, you can 
write ஻ ஺ ஻ ஺⁄

ଶ
஻ ஺⁄
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Group Problem Solving 5

The uniform rod AB of weight W is 
released from rest when β = 70o. 
Assuming that the friction force 
between end A and the surface is large 
enough to prevent sliding, determine 
immediately after release (a) the 
angular acceleration of the rod, (b) the 
normal reaction at A, (c) the friction 
force at A.

Strategy:

• Draw the free-body-diagram and kinetic 
diagram showing the equivalence of the 
external forces and inertial terms.

• Write the equations of motion for the sum 
of forces and for the sum of moments.

• Apply any necessary kinematic relations, 
then solve the resulting equations.
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Group Problem Solving 6

Modeling and Analysis:

Given: WAB = W, β = 70o

Find: AB, NA, Ff

• Draw your FBD and KD

• Set up your equations of motion

x xF ma
f xF ma

y yF ma
A yN mg ma 

G GM I 
2 2

21
12

( cos(70 )) ( sin(70 ))

                    

L L
A F

AB

N F

mL

 



 

• Kinematics and solve (next page)
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Group Problem Solving 7

• Set Up Your Kinematic Relationships – Define Rg/A, Ag

/

2
/A /A

1
( cos(70 ) sin(70 ) )

2
(0.17101 ) (0.46985 )

0 ( ) (0.17101  0.46985  ) 0

0.46985 0.17101 

G A

G A AB G AB G

AB

AB AB

r L L

L L

L L

L L




 

 

 

   

    
  

i j

i j

a a r r

k i j

i j

 



• Realize That You Get Two Equations From The Kinematic Relationship

0.46985         0.17101 x AB y ABa L a L   

• Substitute Into The Sum Of Forces Equations

f xF ma

( )0.46985 f ABF m L 

A yN mg ma 

(0.17101 )A ABN m L g 
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Group Problem Solving 8

• Substitute the Ff and NA into the sum of moments equation

21
2 2 12( cos(70 )) ( sin(70 ))L L

A F ABN F mL   

2 2

21
12

[ (0.17101 )]( cos(70 )) [ ( )0.46985 ]( sin(70 ))

                                                                    

L L
AB AB

AB

m L g m L

mL

 



   



 

• Masses cancel out, solve for AB

2 2 2 2 21
12 20.17101 0.46985  ( cos(70 ))L

AB AB ABL L L g      

0.513AB

g

L
    k • The negative sign means  is 

clockwise, which makes sense.

• Subbing into NA and Ff expressions,

( )0.46985 0.513 g
f LF m L     

0.241fF mg 

(0.17101 0.513 )g
A LN m L g    

0.912AN mg 
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Concept Question 3

What would be true if the floor was 
smooth and friction was zero?

a) The bar would rotate about point A

b) The bar’s center of gravity would go straight downwards

c) The bar would not have any angular acceleration
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Concept Question 4

What would be true if the floor was 
smooth and friction was zero?

a) The bar would rotate about point A

b) Answer: The bar’s center of gravity would go straight 
downwards

c) The bar would not have any angular acceleration
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End of Chapter 16


