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Introduction 1

A Charpy impact test is used to determine the amount of 
energy absorbed by a material during impact.

To determine the amount of energy absorbed, the final 
gravitational potential energy of the arm is subtracted from its 
initial gravitational potential energy.

© Philip Cornwell
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Introduction 2

• Method of work and energy and the method of impulse and momentum will 
be used to analyze the plane motion of rigid bodies and systems of rigid 
bodies.

• Principle of work and energy is well suited to the solution of problems 
involving displacements and velocities.

2211 TUT  

• Principle of impulse and momentum is appropriate for problems involving 
velocities and time.
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• Problems involving eccentric impact are solved by supplementing the 
principle of impulse and momentum with the application of the coefficient 
of restitution.
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Introduction 3

Approaches to Rigid Body Kinetics Problem
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Principle of Work and Energy

Work and kinetic energy are scalar quantities.

• Assume that the rigid body is made of a large number of particles.

2211 TUT  

21, TT

21U

initial and final total kinetic energy of 
particles forming body

total work of internal and external 
forces acting on particles of body.

Internal forces between particles A and B
are equal and opposite.

Therefore, the net work of internal forces is 
zero.
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Work of Forces Acting on a Rigid Body 1

• Work of a force during a displacement of its 
point of application,
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• Consider the net work of two forces FF


 and 

forming a couple of moment M


during a
displacement of their points of application.
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Work of Forces Acting on a Rigid Body 2

Do the pin forces at point 
A do work?

YES NO

Does the force P do work?

YES NO
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Work of Forces Acting on a Rigid Body 3

Do the pin forces at point 
A do work?

YES NO

Does the force P do work?

YES NO
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Work of Forces Acting on a Rigid Body 4

Does the normal force N 
do work on the disk?

YES NO

Does the weight W do work?

YES NO

If the disk rolls without slip, does 
the friction force F do work?

YES NO

  0 dtvFdsFdU cC
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Work of Forces Acting on a Rigid Body 5
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Kinetic Energy of a Rigid Body in Plane 
Motion 1

Consider a rigid body of mass m in plane motion consisting of individual 
particles i. The kinetic energy of the body can then be expressed as:
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Kinetic energy of a rigid body can be 
separated into:

• the kinetic energy associated with the 
motion of the mass center G and

• the kinetic energy associated with the 
rotation of the body about G.

2 21 1
2 2 T mv I  

Translation + Rotation
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Kinetic Energy of a Rigid Body in Plane 
Motion 2

• Consider a rigid body rotating about a fixed axis through O.
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• This is equivalent to using:

2 21 1
2 2 T mv I  

• Remember to only use

21
2 OT I 

when O is a fixed axis of rotation
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Concept Quiz 1

The solid cylinder A and the pipe B 
have the same diameter and mass. If 
they are both released from rest at 
the top of the hill, which will reach 
the bottom the fastest?

a) A will reach the bottom first

b) B will reach the bottom first

c) They will reach the 
bottom at the same time

Which will have the greatest 
kinetic energy when it reaches 
the bottom?

a) Cylinder A b) Pipe B c) Same kinetic energy



© 2019 McGraw-Hill Education.

Concept Quiz 2
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Systems of Rigid Bodies 1

• For problems involving systems consisting of several rigid bodies, the 
principle of work and energy can be applied to each body.

• We may also apply the principle of work and energy to the entire system,

2211 TUT   T1,T2 = arithmetic sum of the kinetic energies of 
all bodies forming the system

U1→ 2 = work of all forces acting on the various 
bodies, whether these forces are internal 
or external to the system as a whole.
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Systems of Rigid Bodies 2

For problems involving pin connected members, blocks and pulleys connected 
by inextensible cords, and meshed gears,

• internal forces occur in pairs of equal and opposite forces

• points of application of each pair move through equal distances

• net work of the internal forces is zero

• work on the system reduces to the work of the external forces
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Conservation of Energy
• Expressing the work of conservative forces as a 

change in potential energy, the principle of work 
and energy becomes

2211 VTVT 

• mass m

• released with zero velocity

• determine w at q

• Consider the slender rod of mass m.
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Power
• Power = rate at which work is done

• For a body acted upon by force F


and moving with velocity ,v


vF
dt

dU 
Power

• For a rigid body rotating with an angular velocity  and acted

upon by a couple of moment M


parallel to the axis of rotation,


M

dt

dM

dt

dU
Power

© Richard McDowell/Alamy RF
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Sample Problem 17.1 1

For the drum and flywheel, 
The bearing friction is equivalent to a 
couple of At the instant shown, 
the block is moving downward at 2 m/s.

ଶ

Determine the velocity of the block after it 
has moved 1.25 m downward.

Strategy:

• Consider the system of the 
flywheel and block.  The work 
done by the internal forces exerted 
by the cable cancels.

• Apply the principle of work and 
kinetic energy to develop an 
expression for the final velocity.

• Note that the velocity of the block 
and the angular velocity of the 
drum and flywheel are related by

rv 



© 2019 McGraw-Hill Education.

Sample Problem 17.1 2

Modeling and Analysis:
• Consider the system of the flywheel and block.  The work 

done by the internal forces exerted by the cable cancels.

• Note that the velocity of the block and the angular velocity of 
the drum and flywheel are related by

𝑣̄ = 𝑟𝜔  𝜔ଵ =
𝑣̄ଵ

𝑟
=

2m/s

0.4m
= 5

rad

s
  𝜔ଶ =

𝑣̄ଶ

𝑟
=

𝑣̄ଶ

0.4

• Apply the principle of work and kinetic energy to develop an 
expression for the final velocity.

𝑇ଵ =
1

2
𝑚𝑣ଵ

ଶ +
1

2
𝐼ሜ𝜔ଵ

ଶ

=
1

2
120 kg 2

m

s

ଶ

+
1

2
16kg ⋅ mଶ 5

rad

s

ଶ

= 440J

𝑇ଶ =
1

2
𝑚𝑣̄ଶ

ଶ +
1

2
𝐼ሜ𝜔ଶ

ଶ

=
1

2
120 kg 𝑣̄ଶ

ଶ +
1

2
16

𝑣ଶ

0.4

ଶ

= 110𝑣̄ଶ
ଶ
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Sample Problem 17.1 3

𝑇ଵ =
1

2
𝑚𝑣ଵ

ଶ +
1

2
𝐼ሜ𝜔ଵ

ଶ = 440J

𝑇ଶ =
1

2
𝑚𝑣̄ଶ

ଶ +
1

2
𝐼ሜ𝜔ଶ

ଶ = 110𝑣̄ଶ
ଶ

• Note that the block displacement and pulley 
rotation are related by

𝜃ଶ =
𝑠ଶ

𝑟
=

1.25m

0.4m
= 3.125rad

• Principle of work and energy:

𝑇ଵ + 𝑈ଵ→ଶ = 𝑇ଶ

440J + 1190J = 110𝑣̄ଶ
ଶ

𝑣̄ଶ = 3.85
m

s 2 3.85m sv =

ଵ→ଶ ଶ ଵ ଶ ଵ

Then,
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Sample Problem 17.1 4

Reflect and Think:

• The speed of the block increases as 
it falls, but much more slowly than 
if it were in free fall. This seems 
like a reasonable result. 

• Rather than calculating the work 
done by gravity, you could have 
also treated the effect of the weight 
using gravitational potential 
energy, Vg.
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Sample Problem 17.2 1

The system is at rest when a 
moment of M=6 N · m is applied 
to gear B.

Neglecting friction, a) determine 
the number of revolutions of gear 
B before its angular velocity 
reaches 600 rpm, and b) 
tangential force exerted by gear B
on gear A.

Strategy:

• Consider a system consisting of the two 
gears. Noting that the gear rotational 
speeds are related, evaluate the final 
kinetic energy of the system.

• Apply the principle of work and energy. 
Calculate the number of revolutions 
required for the work of the applied 
moment to equal the final kinetic energy 
of the system.

• Apply the principle of work and energy to 
a system consisting of gear A. With the 
final kinetic energy and number of 
revolutions known, calculate the moment 
and tangential force required for the 
indicated work.



© 2019 McGraw-Hill Education.

Sample Problem 17.2 2

Modeling and Analysis:

• Consider a system consisting of the two gears. Noting 
that the gear rotational speeds are related, evaluate the 
final kinetic energy of the system.

  

srad1.25
250.0

100.0
8.62

srad8.62
mins60

revrad2rpm600


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Sample Problem 17.2 3

• Apply the principle of work and energy. Calculate 
the number of revolutions required for the work.

 
rad32.27

163.9JJ60
2211



 

B

B

TUT




rev35.4
2

32.27



B

• Apply the principle of work and energy to a system 
consisting of gear A. Calculate the moment and 
tangential force required for the indicated work.

rad93.10
250.0

100.0
32.27 

A

B
BA r

r

   J0.1261.25400.0 2
2
12

2
1

2  AAIT 

 
mN52.11

J0.261rad10.930
2211




 

FrM

M

TUT
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A
N2.46

250.0

52.11
F
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Sample Problem 17.2 4

mm80kg3

mm200kg10




BB

AA

km

km

Reflect and Think:

• When the system was both gears, the 
tangential force between the gears did 
not appear in the work–energy 
equation, since it was internal to the 
system and therefore did no work. If 
you want to determine an internal force, 
you need to define a system where the 
force of interest is an external force. 
This problem, like most problems, also 
could have been solved using Newton’s 
second law and kinematic relationships.
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Sample Problem 17.3 1

A sphere, cylinder, and hoop, each having 
the same mass and radius, are released 
from rest on an incline. Determine the 
velocity of each body after it has rolled 
through a distance corresponding to a 
change of elevation h.

Strategy:

• The work done by the weight of the 
bodies is the same. From the 
principle of work and energy, it 
follows that each body will have the 
same kinetic energy after the change 
of elevation.

• Because each of the bodies has a 
different centroidal moment of 
inertia, the distribution of the total 
kinetic energy between the linear 
and rotational components will be 
different as well.
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Sample Problem 17.3 2

Modeling and Analysis:

• The work done by the weight of the bodies is the 
same. From the principle of work and energy, it 
follows that each body will have the same kinetic 
energy after the change of elevation.
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Sample Problem 17.3 3

• Because each of the bodies has a different 
centroidal moment of inertia, the distribution of 
the total kinetic energy between the linear and 
rotational components will be different as well.

2
2

1

2

mrI

gh
v




ghvmrIHoop

ghvmrICylinder

ghvmrISphere

2707.0:

2816.0:

2845.0:

2

2
2
1

2
5
2







NOTE:

• For a frictionless block sliding through the same

distance, ghv 2,0 

• The velocity of the body is independent of its mass 
and radius.

• The velocity of the body does depend on

2
2

2 r
k

mr
I 
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Sample Problem 17.3 4

Reflect and Think:

• Let us compare the results with the velocity 
attained by a frictionless block sliding through 
the same distance. The solution is identical to 
the previous solution except that ; we 
find .v = 2gh

• Comparing the results, we note that the 
velocity of the body is independent of both its 
mass and radius. However, the velocity does
depend upon the quotient of 2 2 2I / mr k / r ,
which measures the ratio of the rotational 
kinetic energy to the translational kinetic 
energy. Thus the hoop, which has the 
largest k for a given radius r, attains the 
smallest velocity, whereas the sliding 
block, which does not rotate, attains the 
largest velocity.



© 2019 McGraw-Hill Education.

Sample Problem 17.4 1

A 15-kg slender rod pivots about the 
point O. The other end is pressed 
against a spring (k = 300 kN/m) until 
the spring is compressed 25 mm and the 
rod is in a horizontal position.

If the rod is released from this position, 
determine its angular velocity and the 
reaction at the pivot as the rod passes 
through a vertical position.

Strategy:

• The weight and spring forces are 
conservative. The principle of work 
and energy can be expressed as

T1 + V1 = T2 + V2

• Evaluate the initial and final 
potential energy.

• Express the final kinetic energy in 
terms of the final angular velocity 
of the rod.

• Based on the free-body-diagram 
equation, solve for the reactions at 
the pivot.
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Sample Problem 17.4 2

Modeling and Analysis:

• The weight and spring forces are conservative. The 
principle of work and energy can be expressed as

T1 + V1 = T2 + V2

• Evaluate the initial and final potential energy.

𝑉ଵ = 𝑉௚ + 𝑉௘ = 0 +
1

2
𝑘𝑥ଵ

ଶ =
1

2
300,000 0.025m ଶ

= 93.75N ⋅ m

𝑉ଶ = 𝑉௚ + 𝑉௘ = 𝑊ℎ + 0 = 147.15 N 0.45 m

= 66.2175 Jଶ

ଶ

ଶ

• Express the final kinetic energy in terms of the 
angular velocity of the rod.

𝑇ଶ =
1

2
𝑚𝑣̄ଶ

ଶ +
1

2
𝐼ሜ𝜔ଶ

ଶ =
1

2
𝑚 𝑟𝜔ଶ

ଶ +
1

2
𝐼ሜ𝜔ଶ

ଶ

=
1

2
(15) 0.45𝜔ଶ

ଶ +
1

2
2.8125 𝜔ଶ

ଶ



© 2019 McGraw-Hill Education.

Sample Problem 17.4 3

From the principle of work and energy,

𝑇ଵ + 𝑉ଵ = 𝑇ଶ + 𝑉ଶ

0 + 93.75J = 2.925𝜔ଶ
ଶ + 66.2175J

• Based on the free-body-diagram equation, solve for 
the reactions at the pivot.

𝑎̄௡ = 𝑟̄𝜔ଶ
ଶ = 0.45m 3.068rad/s ଶ = 4.236m/sଶ

𝑎̄௧ = 𝑟𝛼
𝑎⃗̄௡ = 4.236m/sଶ ↓

𝑎⃗̄௧ = 𝑟𝛼 →

   effOO MM  rrmI  0 0
   effxx FF  rmRx  0xR

  
effyy FF

2

147.15 N

(15kg)(4.236 m/s )
83.61N

y n

y

R ma

R

- = -

= -
=

𝑅 = 83.6 N ↑
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Sample Problem 17.4 4

Reflect and Think:

• This problem illustrates how you might 
need to supplement the conservation of 
energy with Newton’s second law.

• What if the spring constant had been 
smaller, say 30 kN/m? You would have 
found Ve1 = 9.375 J and then solved to

obtain 2
2 19.43.  

• This is clearly impossible and means that 
the rod would not make it to position 2 as 
assumed.
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Sample Problem 17.6 1

Each of the two slender rods has a 
mass of 6 kg. The system is released
from rest with 60 .  

Determine a) the angular velocity of

rod AB when 20 ,   and b) the
velocity of the point D at the same 
instant.

Strategy:

• Consider a system consisting of the 
two rods. With the conservative 
weight force,

2211 VTVT 

• Evaluate the initial and final potential 
energy.

• Express the final kinetic energy of 
the system in terms of the angular 
velocities of the rods.

• Solve the energy equation for the 
angular velocity, then evaluate the 
velocity of the point D.
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Sample Problem 17.6 2

  
N86.58

sm81.9kg6 2


 mgW

Modeling and Analysis:

• Consider a system consisting of the two rods. With 
the conservative weight force,

2211 VTVT 

• Evaluate the initial and final potential energy.

  
J26.38

m325.0N86.5822 11


 WyV

  
J10.15

m1283.0N86.5822 22


 WyV
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Sample Problem 17.6 3

• Express the final kinetic energy of the system in terms 
of the angular velocities of the rods.

𝑣⃗஺஻ = 0.375m  𝜔 ↘

Since Bv
 is perpendicular to AB and Dv


is horizontal,

the instantaneous center of rotation for rod BD is C.

BC = 0.75m   m513.020sinm75.02 CD

and applying the law of cosines to CDE, EC = 0.522 m

Consider the velocity of point B

    ABB BCABv    BD


𝑣⃗஻஽ = 0.522m 𝜔 ↘

For the final kinetic energy,

   22
12
12

12
1 mkg281.0m75.0kg6  mlII BDAB

         
2

2
2
12

12
12

2
12

12
1

2
2
12

12
12

2
12

12
1

2

520.1

281.0522.06281.0375.06











 BDBDBDABABAB IvmIvmT
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Sample Problem 17.6 4

• Solve the energy equation for the angular velocity, 
then evaluate the velocity of the point D.

srad3.90

J10.151.520J26.380 2

2211









VTVT

 
  

sm00.2

srad90.3m513.0



 CDvD

Dv 2.00 m s 


Reflect and Think:
The only step in which you need to use forces is when calculating the gravitational 
potential energy in each position. However, it is good engineering practice to show the 
complete free-body diagram in each case to identify which, if any, forces do work. You 
could have also used vector algebra to relate the velocities of the various objects.
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Group Problem Solving 1

A slender 4-kg rod can rotate in a vertical 
plane about a pivot at B. A spring of 
constant k = 400 N/m and of unstretched 
length 150 mm is attached to the rod as 
shown. Knowing that the rod is released 
from rest in the position shown, determine 
its angular velocity after it has rotated 
through 90o.

Strategy:

• Because the problem deals with 
positions and velocities, you should 
apply the principle of work energy.

• Draw out the system at position 1 and 
position 2 and define your datum

• Use the work-energy equation 
to determine the angular 
velocity at position 2
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Group Problem Solving 2

Modeling and Analysis:
Draw your diagrams, set your datum and 
apply the work energy equation 

1 1 1 2 2 2T V U T V   

Are any of the terms zero?
1 1 1 2 2 2T V U T V   
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Group Problem Solving 3

Determine the spring energy at position 1

Unstretched 
Length

1

2 2
1

(150 mm ) 370 150 220 mm 0.22 m

1 1
(400 N/m)(0.22 m) 9.68 J

2 2e

x CD

V kx

     

  



2
1 (4 kg)(9.81 m/s )( 0.22 m) 7.063 JgV Wh mgh     

Determine the potential energy due to 
gravity at position 1

Determine the spring energy at position 2

2

2 2
2 2

230 mm 150 mm 80 mm 0.08 m

1 1
(400 N/m)(0.08 m) 1.28 J

2 2e

x

V kx

   

  

Determine the potential energy due to 
gravity at position 2

2 0gV 
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Group Problem Solving 4

2 2
2 2 2

1 1

2 2
T mv I 

2 2 2(0.18 m)v r  

Determine an expression for T2

Can you relate v2 and 2?

2 2 2

2 2 2 2 2
2 2 2 2 2 2

1 1
(4 kg)(0.6 m) 0.12 kg m

12 12
1 1 1 1

(4 kg)(0.18 ) (0.12) 0.1248
2 2 2 2

I mL

T mv I   

   

    

Find I and substitute in to T2

2
2

2
2

9.68 7.063 0.1248 1.28 J

10.713





  


2 3.27 rad/s 

Substitute into T1 + V1 = T2 + V2
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Concept Question 1

For the previous problem, how would 
you determine the reaction forces at B 
when the bar is horizontal?

a) Apply linear-momentum to solve for BxΔt and ByΔt.

b) Use work-energy to determine the work done by the 
moment at C.

c) Use sum of forces and sum of moments equations when 
the bar is horizontal.
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Concept Question 2

For the previous problem, how would 
you determine the reaction forces at B 
when the bar is horizontal?

a) Apply linear-momentum to solve for BxDt and ByDt
b) Use work-energy to determine the work done by the 

moment at C
c) Use sum of forces and sum of moments equations when 

the bar is horizontal
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Angular Impulse Momentum
When two rigid bodies collide, we typically use principles of 
angular impulse momentum. We often also use linear impulse 
momentum (like we did for particles).

© Tetra Images/Alamy RF, © Richard T. Nowitz/Corbis



© 2019 McGraw-Hill Education.

Introduction

Approaches to Rigid Body Kinetics Problems
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Principle of Impulse and Momentum 1

Method of impulse and momentum:

• well suited to the solution of problems involving time and velocity
• the only practicable method for problems involving impulsive motion and 

impact.

Sys Momenta1 + Sys Ext Imp1 to 2 = Sys Momenta2
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Principle of Impulse and Momentum 2

• The momenta of the particles of a system may be 
reduced to a vector attached to the mass center 
equal to their sum,

vmmvL ii


  Δ

and a couple equal to the sum of their 
moments about the mass center, iiiG mvrH Δ


 

• For the plane motion of a rigid slab or of a rigid 
body symmetrical with respect to the reference 
plane,

IH G 

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Principle of Impulse and Momentum 3

For plane motion problems, draw out an impulse-momentum diagram, 
(similar to a free-body diagram).

This leads to three equations of motion:

• summing and equating momenta and impulses in the x and y
directions.

• summing and equating the moments of the momenta and impulses 
with respect to any given point (often choose G).
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Impulse Momentum Diagrams 1

A sphere S hits a stationary bar 
AB and sticks to it. Draw the 
impulse-momentum diagram for 
the ball and bar separately; time 
1 is immediately before the 
impact and time 2 is immediately 
after the impact. 
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Impulse Momentum Diagrams 2

Momentum of the 
ball before impact

Impulse on 
ball

Momentum of the 
ball after impact

Momentum of the 
bar before impact

Impulse on 
bar

Momentum of the 
bar after impact
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Principle of Impulse and Momentum 4

Fixed axis rotation:

• The angular momentum about O

 
 

 




2rmI

rrmI

rvmIIO







• Equating the moments of the momenta and 
impulses about O,

21

2

1

 O

t

t
OO IdtMI   

The pin forces at point O now contribute no moment to the equation 
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Systems of Rigid Bodies

• Motion of several rigid bodies can be analyzed by applying 
the principle of impulse and momentum to each body 
separately.

• For problems involving no more than three unknowns, it may 
be convenient to apply the principle of impulse and 
momentum to the system as a whole.

• For each moving part of the system, the diagrams of momenta 
should include a momentum vector and/or a momentum couple.

• Internal forces occur in equal and opposite pairs of vectors 
and generate impulses that cancel out.
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Practice
From the previous problem, notice that the impulse acting on the 
sphere is equal and opposite to the impulse acting on the bar. We can 
take advantage of this by drawing the impulse-momentum diagram of 
the entire system, as shown on the next slide.
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Practice – Diagram for combined system
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Conservation of Angular Momentum 1

The moments acting through the skater’s center of gravity are 
negligible, so her angular momentum remains constant. She can 
adjust her spin rate by changing her moment of inertia.

1 2                         G GI I 
© Jill Braaten
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Conservation of Angular Momentum 2

• When no external force acts on a rigid body or a system of rigid 
bodies, the system of momenta at t1 is equipollent to the system 
at t2. The total linear momentum and angular momentum about 
any point are conserved,

21 LL


    2010 HH 

• When the sum of the angular impulses pass through O, the 
linear momentum may not be conserved, yet the angular 
momentum about O is conserved,

   2010 HH 

• Two additional equations may be written by summing x
and y components of momenta and may be used to 
determine two unknown linear impulses, such as the 
impulses of the reaction components at a fixed point.



© 2019 McGraw-Hill Education.

Concept Question 3

For the problem we looked at previously, is the 
angular momentum about G conserved? Yes No

For the problem we looked at previously, is the 
angular momentum about point A conserved? Yes No

For the problem we looked at previously, is the 
linear momentum of the system conserved? Yes No
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Concept Question 4

For the problem we looked at previously, is the 
angular momentum about G conserved? Yes No

For the problem we looked at previously, is the 
angular momentum about point A conserved? Yes No

For the problem we looked at previously, is the 
linear momentum of the system conserved? Yes No
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Sample Problem 17.7 1

mm80kg3

mm200kg10




BB

AA

km

km

The system is at rest when a moment of 
M = 6N • m is applied to gear B.

Neglecting friction, a) determine the time 
required for gear B to reach an angular 
velocity of 600 rpm, and b) the tangential 
force exerted by gear B on gear A.

Strategy:

• Considering each gear separately, 
apply the method of impulse and 
momentum.

• Solve the angular momentum 
equations for the two gears 
simultaneously for the unknown 
time and tangential force.
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Sample Problem 17.7 2

Modeling and Analysis:

• Considering each gear separately, apply the method of impulse 
and momentum.

moments about A:

 
    

2
0

0.250 m 0.400kg m 25.1rad s

40.2 N s

A A AFtr I

Ft

Ft

  

 

 

moments about B:

 
   

  srad8.62mkg0192.0

m100.0mN6

0

2

2







Ftt

IFtrMt BBB 

• Solve the angular momentum equations for the two gears simultaneously 
for the unknown time and tangential force.

N 46.2s 871.0  Ft
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Sample Problem 17.7 3

mm80kg3

mm200kg10




BB

AA

km

km

Reflect and Think:

• This is the same answer obtained in 
Sample Prob. 17.2 by the method of 
work and energy, as you would expect. 
The difference is that in Sample Prob. 
17.2, you were asked to find the number 
of revolutions, and in this problem, you 
were asked to find the time. 

• What you are asked to find will often 
determine the best approach to use when 
solving a problem.
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Sample Problem 17.8 1

Uniform sphere of mass m and 
radius r is projected along a rough 
horizontal surface with a linear
velocity 1v and no angular velocity.
The coefficient of kinetic friction is 
μk.

Determine a) the time t2 at which 
the sphere will start rolling 
without sliding and b) the linear 
and angular velocities of the 
sphere at time t2.

Strategy:

• Apply principle of impulse and 
momentum to find variation of linear 
and angular velocities with time.

• Relate the linear and angular 
velocities when the sphere stops 
sliding by noting that the velocity of 
the point of contact is zero at that 
instant.

• Substitute for the linear and 
angular velocities and solve for 
the time at which sliding stops.

• Evaluate the linear and angular 
velocities at that instant.
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Sample Problem 17.8 2

Modeling and Analysis:

• Apply principle of impulse and 
momentum to find variation of linear 
and angular velocities with time.

Sys Momenta1 + Sys Ext Imp1-2 = Sys Momenta2

y components: mgWN 
0WtNt

x components:

21

21

vmmgtvm

vmFtvm

k 



gtvv k 12

moments about G:

    2
2

5
2

2





mrtrmg

IFtr

k 


t

r

gk
2

5
2 

• Relate linear and angular velocities 
when sphere stops sliding by noting 
that velocity of point of contact is 
zero at that instant.

• Substitute for the linear and angular 
velocities and solve for the time at 
which sliding stops.











t
r

g
rgtv

rv

k
k





2

5
1

22

g

v
t

k
1

7

2

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Sample Problem 17.8 3

Sys Momenta1 + Sys Ext Imp1 to 2 = Sys 
Momenta2

y components: mgWN 

x components: gtvv k 12

moments about G: t
r

gk
2

5
2 











t
r

g
rgtv

rv

k
k





2

5
1

22

g

v
t

k
1

7

2


• Evaluate the linear and angular velocities 
at that instant.











g

v
gvv

k
k 

 1
12 7

2

2 1

5
v v

7
 











g

v

r

g

k

k


 1

2 7

2

2

5

Reflect and Think:

• This is the same answer obtained in 
Sample Prob. 16.6 by first dealing 
directly with force and acceleration 
and then applying kinematic 
relationships.
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Sample Problem 17.9 1

Two solid spheres (radius = 100 mm, 
m = 1 kg) are mounted on a spinning  
horizontal rod (
 = 6 rad/sec) as shown.  The balls are 
held together by a string which is 
suddenly cut.  Determine a) angular 
velocity of the rod after the balls have 
moved to A’ and B’, and b) the energy 
lost due to the plastic impact of the 
spheres and stops.

𝐼ሜோ = 0.4 kg ⋅ mଶ,

Strategy:

• Observing that none of the external 
forces produce a moment about the y
axis, the angular momentum is 
conserved.

• Equate the initial and final angular 
momenta.  Solve for the final angular 
velocity.

• The energy lost due to the plastic impact 
is equal to the change in kinetic energy 
of the system.
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Sample Problem 17.9 2

Sys Momenta1 + Sys Ext Imp1-2 = Sys Momenta2

      2222211111 22  RSsRSs IIrrmIIrrm 

Modeling and Analysis:

• Observing that none of the 
external forces produce a 
moment about the y axis, the 
angular momentum is 
conserved.

• Equate the initial and final 
angular momenta.  Solve for 
the final angular velocity.

𝐼ሜௌ =
2

5
𝑚𝑎ଶ =

2

5
1kg 0.1m ଶ =  0.04kg  ⋅   mଶ

𝑚ௌ𝑟̄ଵ
ଶ = 1kg 0.15m ଶ = 0.0225kg  ⋅  mଶ 

𝑚ௌ𝑟̄ଶ
ଶ = 1kg 0.6m ଶ = 0.36kg  ⋅   mଶ

RSs

RSs

IIrm

IIrm





2

2

2
1

12 

srad61  𝐼ሜோ = 0.4 kg ⋅ mଶ

𝜔ଶ = 2.41rad/s
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Sample Problem 17.9 3

• The energy lost due to the 
plastic impact is equal to the 
change in kinetic energy of the 
system.

𝐼ሜௌ = 0.004kg ⋅ mଶ

𝑚ௌ𝑟̄ଵ
ଶ = 0.0225kg ⋅ mଶ

𝜔ଵ = 6 rad s⁄

𝐼ሜோ = 0.4 kg ⋅ mଶ

𝜔ଶ = 2.4096rad/s 

𝑚ௌ𝑟̄ଶ
ଶ = 0.36kg ⋅ mଶ

    22
2
12

2
12

2
12

2
1 222  RSSRSS IIrmIIvmT 

( )( )

( )( )

21
1 2

21
2 2

2 1

0.453 6 8.154J

1.128 2.4096 3.275J

8.154 3.275

T

T

ΔT T T

= =

= =

= - = -
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Sample Problem 17.9 4

Reflect and Think:
• As expected, when the spheres move 

outward, the angular velocity of the 
system decreases. This is similar to an 
ice skater who throws her arms 
outward to reduce her angular speed.
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Group Problem Solving 5

A projectile weighing 40 g is fired with a horizontal velocity 
of 550 m/s into the lower end of a slender 7.5-kg bar of length 
L= 800 mm.  Knowing that h= 300 mm and that the bar is 
initially at rest, determine the angular velocity of the bar 
when it reaches the horizontal position.

Strategy:

• Consider the projectile and bar as a 
single system.  Apply the principle of 
impulse and momentum.

• The moments about C of the momenta 
and impulses provide a relation between 
the final angular velocity of the rod and 
velocity of the projectile.

• Use the principle of work-energy to 
determine the angle through which the 
bar swings. 
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Group Problem Solving 6

Given:  Wo= (0.04 kg)(9.81 m/s2) 
= 0.3924 N,  vo=  550 m/s 
WAB = (7.5 kg)(9.81 m/s2) 
= 73.575 N L= 0.8 m h= 0.3 m 
Find:   AB when = 90o

Modeling and Analysis:
Draw the impulse momentum diagram

Apply the angular impulse momentum 
equation about point C

0 0 0( ) ( )B Cm v L h m v L h I    

0 0 0 0( ) ( )
2B
L

m v L h m v L h mv h I        
 

Or you could use the relationship:
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Group Problem Solving 7

Relate vB and  (after the impact)

0 0 0( ) ( )B Cm v L h m v L h I    

( )Bv L h  

Substitute into equation (1) and solve for 
2

0 0 0( ) ( ) Cm v L h m L h I    

0 0
2

0

( )

( ) C

m v L h

m L h I





 

0 0
2 2

0

( ) (0.04kg)(550m/s)(0.8 0.3)

( ) (0.04kg)(0.8 0.3) 0.475C

m v L h

m L h I


 
 

   

2 2 2 2

2

0.8m 7.5kg

1 1
(7.5)(0.8) (7.5)(0.1)

12 12

0.475 kg m

C

C

L m

I mL md

I

 

   

 

2 22.68 rad/s 

Find IC

Substitute and solve
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Group Problem Solving 8

Draw position 1 and 2, set your datum and 
apply the conservation of energy equation 

2 2 3 3T V T V  
DATUM

2 2
2 2

1 1
(0.475)(22.68)

2 2CT I  

2 122.166 JT 

2 2 2 2 2m gy m gy y yAB AB O O AB AB O OV W W   

2 273.575( ) 0.3924( ) 73.575(0.1) (0.3924)(0.5) 7.5537 JLV h L h         

Find T2

Find V2

B

Solve for 3

2
3 3 2 2

1

2 CT I T V  

2
3

1
(0.475) 122.166 7.5537

2
   3 22.0 rad/s 

1

2
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Concept Question 5

For the previous problem, how would 
you determine the reaction forces at C 
when the bar is horizontal?

a) Apply linear-momentum to solve for CxDt and CyDt.

b) Use work-energy to determine the work done by the 
moment at C.

c) Use sum of forces and sum of moments equations when the 
bar is horizontal.
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Concept Question 6

For the previous problem, how would 
you determine the reaction forces at C 
when the bar is horizontal?

a) Apply linear-momentum to solve for CxDt and CyDt.

b) Use work-energy to determine the work done by the 
moment at C.

c) Use sum of forces and sum of moments equations when the 
bar is horizontal.
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Concept Question 7

For the previous problem, what would 
happen if the coefficient of restitution 
between the projectile and bar was 1.0 
instead of zero?

a) The angular velocity after impact would be bigger.

b) The angular velocity after impact would be smaller.

c) The angular velocity after impact would be the same.

c) Not enough information to tell.



© 2019 McGraw-Hill Education.

Concept Question 8

For the previous problem, what would 
happen if the coefficient of restitution 
between the projectile and bar was 1.0 
instead of zero?

a) The angular velocity after impact would be bigger.

b) The angular velocity after impact would be smaller.

c) The angular velocity after impact would be the same.

d) Not enough information to tell.
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Eccentric Impact

   nBnA uu
 

Period of deformation

 dtRImpulse


Period of restitution

 dtPImpulse


• Principle of impulse and momentum is supplemented by

   
   nBnA

nAnB

vv

vv

dtP

dtR
nrestitutiooftcoefficiene








 


These velocities are for the 
points of impact
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Concept Question 9

The cars collide, hitting at point 
P as shown. Which of the 
following can you use to help 
analyze the collision?

a) The linear momentum of car A is 
conserved.

b) The linear momentum of the 
combined two cars is conserved

c) The total kinetic energy before the 
impact equals the total kinetic energy 
after the impact

d) The angular momentum about the CG of 
car B is conserved
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Concept Question 10

The cars collide, hitting at point 
P as shown. Which of the 
following can you use to help 
analyze the collision?

a) The linear momentum of car A is 
conserved.

b) The linear momentum of the 
combined two cars is conserved

c) The total kinetic energy before the 
impact equals the total kinetic energy 
after the impact

d) The angular momentum about the CG of 
car B is conserved
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Sample Problem 17.11 1

A 25-g bullet is fired into the side of a 
10-kg square panel which is initially at 
rest.

Determine a) the angular velocity of the 
panel immediately after the bullet 
becomes embedded and b) the impulsive 
reaction at A, assuming that the bullet 
becomes embedded in 0.0006 s.

Strategy:

• Consider a system consisting of the 
bullet and panel.  Apply the principle of 
impulse and momentum.

• The final angular velocity is found 
from the moments of the momenta and 
impulses about A.

• The reaction at A is found from the 
horizontal and vertical momenta and 
impulses.
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Sample Problem 17.11 2

Modeling and Analysis:

• Consider a system consisting 
of the bullet and panel.  Apply 
the principle of impulse and 
momentum.

• The final angular velocity is 
found from the moments of 
the momenta and impulses 
about A.

moments about A:

𝑚஻𝑣஻ 0.4m + 0 = 𝑚௣𝑣̅ଶ 0.25m + 𝐼ሜ௉𝜔ଶ

𝑣̄ଶ = 0.25m 𝜔ଶ 𝐼ሜ௉ =
1

6
𝑚௉𝑏ଶ =

1

6
10kg 0.5m ଶ = 0.417kg ⋅ mଶ

0.025 450 0.4 = 10 0.25𝜔ଶ 0.25 + 0.417𝜔ଶ

𝜔ଶ = 4.32rad/s
𝑣̄ଶ = 0.25 𝜔ଶ = 1.08m/s

𝜔ଶ = 4.32rad/s
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Sample Problem 17.11 3

𝜔ଶ = 4.32rad/s  𝑣̄ଶ = 0.25 𝜔ଶ = 1.08m/s

• The reactions at A are found 
from the horizontal and 
vertical momenta and 
impulses.

x components:

𝑚஻𝑣஻ + 𝐴௫Δ𝑡 = 𝑚௣𝑣̄ଶ

0.025 450 + 𝐴௫ 0.0006 = 10 1.08

750 NxA =- 750 NxA =

y components:

00  tAyD 0yA

Reflect and Think:

• The speed of the bullet is in the range of 
a modern high-performance rifle. 
Notice that the reaction at A is over 
5000 times the weight of the bullet and 
over 10 times the weight of the plate.
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Sample Problem 17.13 1

A 2-kg sphere with an initial 
velocity of 5 m/s strikes the lower 
end of an 8-kg rod AB. The rod is 
hinged at A and initially at rest. 
The coefficient of restitution 
between the rod and sphere is 0.8.

Determine the angular velocity of 
the rod and the velocity of the 
sphere immediately after impact.

Strategy:

• Consider the sphere and rod as a single 
system. Apply the principle of impulse 
and momentum.

• The moments about A of the momenta and 
impulses provide a relation between the 
final angular velocity of the rod and 
velocity of the sphere.

• The definition of the coefficient of 
restitution provides a second relationship 
between the final angular velocity of the 
rod and velocity of the sphere. 

• Solve the two relations simultaneously for 
the angular velocity of the rod and velocity 
of the sphere.
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Sample Problem 17.13 2

Modeling and Analysis:

• Consider the sphere and rod as a 
single system. Apply the 
principle of impulse and 
momentum.

• The moments about A of the 
momenta and impulses provide a 
relation between the final 
angular velocity of the rod and 
velocity of the rod.       Ivmvmvm RRssss m6.0m2.1m2.1

 
   22

12
12

12
1 mkg96.0m2.1kg8

m6.0





mLI

rvR 

            
 






2mkg96.0

m6.0m6.0kg8m2.1kg2m2.1sm5kg2 sv

 84.34.212 sv
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Sample Problem 17.13 3

 84.34.212 sv

• The definition of the coefficient 
of restitution provides a second 
relationship between the final 
angular velocity of the rod and 
velocity of the sphere. 

 
   sm58.0m2.1 



s

sBsB

v

vvevv



• Solve the two relations 
simultaneously for the angular 
velocity of the rod and velocity 
of the sphere.

Solving,

rad/s21.3

sm143.0sv sv 0.143m s  

Reflect and Think

• The negative value for the velocity of 
the sphere after impact means that it 
bounces back to the left. Given the 
masses of the sphere and the rod, this 
seems reasonable
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Sample Problem 17.14 1

A square package of mass m moves 
down conveyor belt A with constant 
velocity. At the end of the conveyor, 
the corner of the package strikes a 
rigid support at B. The impact is 
perfectly plastic.

Derive an expression for the 
minimum velocity of conveyor belt 
A for which the package will rotate 
about B and reach conveyor belt C.

Strategy:

• Apply the principle of impulse and 
momentum to relate the velocity of the 
package on conveyor belt A before the 
impact at B to the angular velocity 
about B after impact.

• Apply the principle of conservation of 
energy to determine the minimum 
initial angular velocity such that the 
mass center of the package will reach 
a position directly above B.

• Relate the required angular velocity to 
the velocity of conveyor belt A.
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Sample Problem 17.14 2

Modeling and Analysis:

• Apply the principle of impulse and momentum to relate the velocity of the package on 
conveyor belt A before the impact at B to angular velocity about B after impact.

      22
2

22
1

1 0 Iavmavm    2
6
1

22
2

2 amIav  

        2
2

6
1

2
2

22
2

2
1

1 0  amaamavm 

23
4

1 av 
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Sample Problem 17.14 3

   
  aa

GBh

612.060sin

1545sin

2
2

2





aah 707.0
2
2

3 

• Apply the principle of conservation of energy to determine 
the minimum initial angular velocity such that the mass 
center of the package will reach a position directly above B.

3322 VTVT 

    2
2

2
3
12

2
2

6
1

2
1

2
22

2
2
1

2
22

12
22

1
2





mamaam

ImvT





22 WhV 

03 T (solving for the minimum w2)

33 WhV 

    agaa
a

g
hh

ma

W

WhWhma

285.0612.0707.0
33

0

2232
2
2

32
2
2

2
3
1









agaav 285.0
3
4

23
4

1   gav 712.01 
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Sample Problem 17.14 4

Reflect and Think:

• The combination of energy and 
momentum methods is typical of 
many design analyses. If you had 
been interested in determining the 
reaction at B immediately after the 
impact or at some other point in the 
motion, you would have needed to 
draw a free-body diagram and 
kinetic diagram and apply Newton’s 
second law.
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Group Problem Solving 9

An 8-kg wooden panel P is suspended from a pin support at A and is 
initially at rest. A 2-kg metal sphere S is released from rest at B and falls 
into a hemispherical cup C attached to the panel at the same level as the 
mass center G. Assuming that the impact is perfectly plastic, determine 
the angular velocity of the panel immediately after the impact.

Strategy:

• Consider the sphere and panel as a 
single system.  Apply the principle of 
impulse and momentum.

• The moments about A of the momenta 
and impulses provide a relation between 
the angular velocity of the panel and 
velocity of the sphere.

• Use the principle of work-energy to 
determine the angle through which the 
panel swings. 
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Group Problem Solving 10

Given: mS= 2 kg, mP = 8 kg, 
hS= 0.250 m, e= 0. 
Find: Angle  through which 
the panel and sphere swing 
after the impact

Modeling and Analysis:
Draw the impulse momentum diagram

Apply the angular impulse momentum 
equation about point A

1 2 2 2( ) (0.2 m) 0 ( ) ( ) (0.25 m)S C S C Pm v m v AC I m v     

HA of sphere 
before impact

HA of sphere 
after impact

HA of panel 
after impact
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Group Problem Solving 11

Determine velocity of sphere at impact (vS)1

1 2 2 2( ) (0.2 m) 0 ( ) ( ) (0.25 m)S C S C Pm v m v AC I m v     

1

2

( ) 2

2(9.81 m/s )(0.5 m)

3.1321 m/s

Sv gy




You can apply work-energy or kinematics

Determine velocity of sphere after impact in terms of 2

2 2(0.2) (0.25) 0.32016 mAC   

2 2( )S AC v

2 2( ) 0.32016S v

(perpendicular to .)AC



© 2019 McGraw-Hill Education.

Group Problem Solving 12

Determine mass moment of inertia for panel

1 2 2 2( ) (0.2 m) 0 ( ) ( ) (0.25 m)S C S C Pm v m v AC I m v     

Substitute into H equation and solve for 2

2 2 21 1
(0.5 m) (8)(0.5) 0.3333 kg m

6 6PI m   

1 2 2 2

2
2 2 2

2

2

( ) (0.2 m) 0 ( ) ( ) (0.25 m)

(2 kg)(3.1321 m/s)(0.2m) (2 kg)(0.32016 )(0.32016 m) 0.3333 (8 kg)(0.25 m)

1.25284 (0.2050 0.3333 0.500)

1.207 rad/s

S C S C Pm v m v AC I m v

  




    

  
  

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Concept Question 11

For the previous problem, what would 
you do if you wanted to determine how 
high up the panel swung after the 
impact?

a) Apply linear-momentum to solve for mvG

b) Use work-energy and set Tfinal equal to zero

c) Use sum of forces and sum of moments equations
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Concept Question 12

For the previous problem, what would 
you do if you wanted to determine how 
high up the panel swung after the 
impact?

a) Apply linear-momentum to solve for mvG

b) Use work-energy and set Tfinal equal to zero
c) Use sum of forces and sum of moments equations
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Concept Question 13

For the previous problem, what if the 
ball was dropped closer to point A 
(example: at x= 100 mm instead of 
200 mm)?

a) The angular velocity after impact would be bigger

b) The angular velocity after impact would be smaller

c) The angular velocity after impact would be the same

d) Not enough information to tell
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Concept Question 14

For the previous problem, what if the 
ball was dropped closer to point A (e.g., 
at x= 100 mm instead of 200 mm)?

a) The angular velocity after impact would be bigger
b) The angular velocity after impact would be smaller
c) The angular velocity after impact would be the same
d) Not enough information to tell
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End of Chapter 17


