ASE2910 Applied Linear Algebra / AUS2910 Fundamental Math for AI Homework #2

- 1) Matrix equality. Let A and B be two $m \times n$ matrices. Under each of the assumptions below, determine whether A = B must always hold, or whether A = B holds only sometimes.
 - a) Suppose Ax = Bx holds for all *n*-vectors x.
 - b) Suppose Ax = Bx for some nonzero n-vector x.
- 2) Orthogonal projection. Let x be an n-vector and u_1, \ldots, u_k with k < n be orthonormal n-vectors. The projection of x onto the span of u_1, \ldots, u_k is

$$\hat{x} = (u_1^T x)u_1 + \dots + (u_k^T x)u_k \in \mathbb{R}^n$$

and the projection of x onto the span of u_1, \ldots, u_{k-1} is

$$\tilde{x} = (u_1^T x)u_1 + \dots + (u_{k-1}^T x)u_{k-1} \in \mathbb{R}^n.$$

Show that \hat{x} is closer to x than \tilde{x} in that

$$\|\hat{x} - x\| \le \|\tilde{x} - x\|.$$

- 3) Transformation by orthonormal vectors. Suppose that the columns of $T \in \mathbb{R}^{n \times k}$ with $k \leq n$ are orthonormal. Show that the transformation $x \mapsto Tx$ satisfies the following properties.
 - a) The transformation is *isometric*, *i.e.*, it preserves *distance* between vectors,

$$||Tx - Ty|| = ||x - y||, \quad \forall x, y.$$

b) The transformation is *conformal*, i.e., it preserves angle between vectors,

$$\angle(Tx, Ty) = \angle(x, y), \quad \forall x, y.$$

4) Map on a Napkin. You choose three non-orthogonal direction hints in \mathbb{R}^3 ,

$$u_1 = (1, 1, 0),$$
 $u_2 = (0, 1, 1),$ $u_3 = (1, 0, 1),$

and wish to construct an orthonormal world frame q_1, q_2, q_3 via Gram–Schmidt algorithm. Then, express the landmark

$$p = (6, 5, 4)$$

in the q-coordinates, *i.e.*, compute $(\langle q_1, p \rangle, \langle q_2, p \rangle, \langle q_3, p \rangle)$. Provide all steps symbolically (with exact radicals), and verify orthonormality explicitly.

- 5) VMLS Exercises.
 - a) **5.1** Linear independence of stacked vectors.
 - b) **5.4** Norm of linear combination of orthonormal vectors.
 - c) **5.5** Orthogonalizing vectors.
 - d) **5.6** Gram-Schmidt algorithm.
 - e) 5.8 Early termination of Gram-Schmidt algorithm.
 - f) **6.3** Block matrix.
 - g) 6.8 Cash flow to bank account balance.
 - h) **6.10** Resource requirements.
 - i) **6.12** Skew-symmetric matrices.
 - $j) \ \, \textbf{6.14} \ \, \textit{Norm of matrix-vector product}.$
 - k) 6.17 Stacked matrix.