ASE2910 Applied Linear Algebra / AUS2910 Fundamental Math for AI Homework #4

- 1) Lower triangular matrices. Let A be a lower triangular $n \times n$ matrix. Verify the following properties.
 - a) If B is a lower triangular $n \times n$ matrix, then the product AB is lower triangular.
 - b) The matrix A^k is lower triangular for all positive integers k.
 - c) If A is invertible, then A^k is lower triangular for all integers k (positive or negative).
- 2) QR factorization of matrix with orthonormal columns. Suppose the columns of a matrix A are orthonormal, and we (attempt) to compute its QR factorization A = QR. Which of the following must be true?
 - a) The QR factorization will fail.
 - b) R = I
 - c) R = A
 - d) Q = I
 - e) Q = A
- 3) Matrix identities. Check that the following identities regarding matrix inverses hold. You can assume that X,Y,Z are matrices in appropriate sizes, and a, b are vectors in appropriate sizes. You can also assume that the appearing inverses exist.

a)
$$Z(I+Z)^{-1} = I - (I+Z)^{-1}$$

b)
$$(I + XY)^{-1} = I - X(I + YX)^{-1}Y$$

c)
$$Y(I + XY)^{-1} = (I + YX)^{-1}Y$$

d)
$$(I + XZ^{-1}Y)^{-1} = I - X(Z + YX)^{-1}Y$$

e)
$$(X + ab^T)^{-1} = X^{-1} - \frac{1}{1 + b^T X^{-1} a} X^{-1} a b^T X^{-1}$$

- 4) VMLS Exercises.
 - a) 11.6 Inverse of a block upper triangular matrix.
 - b) 11.12 Combinations of invertible matrices.
 - c) 11.14 Middle inverse.
 - d) 11.15 Invertibility of population dynamics matrix.