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Least squares problem

> suppose m X n matrix A is tall, so Ax = b is over-determined
» for most choices of b, there is no x that satisfies Ax = b

> residualisr = Ax —b

» least squares problem: choose x to minimize ||Ax — b||2

> ||Ax — b||? is the objective function

> X is a solution of least squares problem if
1A% = bII* < [|Ax = bII?
for any n-vector x

» idea: X makes residual as small as possible, if not O

» also called regression (in data fitting context)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 12.2



Least squares problem

» X called least squares approximate solution of Ax = b

> X is sometimes called ‘solution of Ax = b in the least squares sense

— this is very confusing
— never say this
— do not associate with people who say this

» X need not (and usually does not) satisfy Ax = b

» but if X does satisfy Ax = b, then it solves least squares problem
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Column interpretation

> suppose ai,...,a, are columns of A

» then
|Ax = b||> = ||(x1a1 + - - - + Xpa) — bl|?

> S0 least squares problem is to find a linear combination of columns of A
that is closest to b

> if X is a solution of least squares problem, the m-vector
A.?C:.?Clal + ¢ +.%nan

is closest to b among all linear combinations of columns of A
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Row interpretation

> suppose i ,...,d,, are rows of A

> residual components are r; = Zzl.Tx — b;

> least squares objective is
|Ax — b||* = (@lx—b1)* + -+ + (@ x — by)*

the sum of squares of the residuals

> S0 least squares minimizes sum of squares of residuals

— solving Ax = b is making all residuals zero
— least squares attempts to make them all small
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» Ax = b has no solution

O
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» least squares problem is to choose x to minimize

IAx = b||> = 2x1 — 1% + (=x1 + x2)> + 2x3 + 1)?

> |east squares approximate solution is x = (1/3,—1/3) (say, via calculus)

> ||AX — l9||2 = 2/3 is smallest posible value of ||[Ax — b||2

» Ax = (2/3,-2/3,-2/3) is linear combination of columns of A closest to b
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Solution of least squares problem
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Solution of least squares problem

» we make one assumption: A has linearly independent columns
> this implies that Gram matrix A’ A is invertible

> unique solution of least squares problem is
2= ATAATh = ATD

» cf. x = A~'b, solution of square invertible system Ax = b
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Derivation via calculus

» define

2
f(x) = ||Ax — b||* = Z( Ajjxj — bi)
j=1

i=1
» solution X satisfies

T &) =@ =0, k=1,....n
0xy,

» taking partial derivatives we get Vf(x); = (ZAT(Ax — b)) L

> in matrix-vector notation: Vf(x) = 247 (A% - b) =0
> so X satisfies normal equations (ATA)x = ATh

» and therefore & = (ATA)~1ATH
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Direct verification

> leti = (ATA)'ATh, so AT(AX - b) =0
» for any n-vector x we have

IAx = bII* = [I[(Ax — A%) + (A% - b)|I?
= JJAx=2)II> + |AX = bII* + 2(A(x - 2))" (A% - b)
= |JAx=D)|* + ||AX = b|I” + 2(x = 2)TAT (A% - b)
= [JAGx-D)II* + [IA% - b]I?

> so for any x, |[Ax — b||* > ||A% — b||?

» if equality holds, A(x — x) = 0, which implies x = X since columns of A are
linearly independent
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Computing least squares approximate solutions

> compute QR factorization of A: A = QR (2mn? flops)

» QR factorization exists since columns of A are linearly independent

> to compute & = ATh = R71Q7h
— form Q'b  (2mn flops)
— compute X = R~1(OTb) via back substitution (n2 flops)

> total complexity 2mn? flops

» identical to algorithm for solving Ax = b for square invertible A

» but when A is tall, gives least squares approximate solution
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Examples
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Advertising purchases

» m demographics groups we want to advertise to

> 198 is m-vector of target views or impressions

> n-vector s gives spending on n advertising channels

> m X n matrix R gives demographic reach of channels

> R;; is number of views per dollar spent (in 1000/$)

» v = Rs is m-vector of views across demographic groups
> ||[v9e — Rs||/ \/m is RMS deviation from desired views

» we'll use least squares spending § = RTv4 (need not be > 0)
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Example

» m = 10 groups, n = 3 channels

> target views vector v4® = 10° x 1

» optimal spending is § = (62,100, 1443)

Columns of matrix R
I Y N I N R

Impressions

[U—
]

|

0 @ Channel 1
[ @ Channel 2
[0 0 Channel 3

HH HHH

|
1

A A N R B
2 3 4 5 6 7 8 91
Group

Introduction to Applied Linear Algebra

;

0

Impressions

Target v9¢5 and achieved views RS

1,500 [~ =
1,000 ——F _ -
500 | s
\ \ \ \ \ \ \ \ \ \
1 2 3 4 5 6 7 8 9 10
Group
Boyd & Vandenberghe 12.14



lllumination

» n lamps illuminate an area divided in m regions

> Aj; is illumination in region i if lamp j is on with power 1, other lamps are off
> x;j is power of lamp j

> (Ax); is illumination level at region i

> b; is target illumination level at region i

25m |
om) 42
3 (6.0m)
4 (4.0m) o5 (6:0m) figure shows lamp positions for
’ 5 (4.0m) S/ (2om) example with
_ ng2 _
‘8 (5.0m) .9 (5.0m) .10 (4.5m) m =125, n=10
OO 25m
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lllumination

» equal lamp powers (x = 1)
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