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Least squares problem

I suppose m ⇥ n matrix A is tall, so Ax = b is over-determined

I for most choices of b, there is no x that satisfies Ax = b

I residual is r = Ax � b

I least squares problem: choose x to minimize kAx � bk2

I kAx � bk2 is the objective function

I x̂ is a solution of least squares problem if

kAx̂ � bk2  kAx � bk2

for any n-vector x

I idea: x̂ makes residual as small as possible, if not 0

I also called regression (in data fitting context)
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Least squares problem

I x̂ called least squares approximate solution of Ax = b

I x̂ is sometimes called ‘solution of Ax = b in the least squares sense’
– this is very confusing
– never say this
– do not associate with people who say this

I x̂ need not (and usually does not) satisfy Ax̂ = b

I but if x̂ does satisfy Ax̂ = b, then it solves least squares problem
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Column interpretation

I suppose a1, . . . ,an are columns of A

I then
kAx � bk2 = k(x1a1 + · · · + xnan) � bk2

I so least squares problem is to find a linear combination of columns of A

that is closest to b

I if x̂ is a solution of least squares problem, the m-vector

Ax̂ = x̂1a1 + · · · + x̂nan

is closest to b among all linear combinations of columns of A
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Row interpretation

I suppose ã
T

1 , . . . , ã
T

m
are rows of A

I residual components are ri = ã
T

i
x � bi

I least squares objective is

kAx � bk2 = (ãT

1 x � b1)2 + · · · + (ãT

m
x � bm)2

the sum of squares of the residuals

I so least squares minimizes sum of squares of residuals
– solving Ax = b is making all residuals zero
– least squares attempts to make them all small

Introduction to Applied Linear Algebra Boyd & Vandenberghe 12.5



Example
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I Ax = b has no solution
I least squares problem is to choose x to minimize

kAx � bk2 = (2x1 � 1)2 + (�x1 + x2)2 + (2x2 + 1)2

I least squares approximate solution is x̂ = (1/3,�1/3) (say, via calculus)
I kAx̂ � bk2 = 2/3 is smallest posible value of kAx � bk2
I Ax̂ = (2/3,�2/3,�2/3) is linear combination of columns of A closest to b
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Solution of least squares problem

I we make one assumption: A has linearly independent columns

I this implies that Gram matrix A
T

A is invertible

I unique solution of least squares problem is

x̂ = (AT
A)�1

A
T

b = A
†
b

I cf. x = A
�1

b, solution of square invertible system Ax = b
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Derivation via calculus

I define

f (x) = kAx � bk2 =
mX

i=1

*.
,

nX

j=1

Aijxj � bi

+/
-

2

I solution x̂ satisfies

@f

@xk

(x̂) = rf (x̂)k = 0, k = 1, . . . ,n

I taking partial derivatives we get rf (x)k =
⇣
2A

T (Ax � b)
⌘

k

I in matrix-vector notation: rf (x̂) = 2A
T (Ax̂ � b) = 0

I so x̂ satisfies normal equations (AT
A)x̂ = A

T
b

I and therefore x̂ = (AT
A)�1

A
T

b
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Direct verification

I let x̂ = (AT
A)�1

A
T

b, so A
T (Ax̂ � b) = 0

I for any n-vector x we have

kAx � bk2 = k(Ax � Ax̂) + (Ax̂ � b)k2
= kA(x � x̂)k2 + kAx̂ � bk2 + 2(A(x � x̂))T (Ax̂ � b)
= kA(x � x̂)k2 + kAx̂ � bk2 + 2(x � x̂)T

A
T (Ax̂ � b)

= kA(x � x̂)k2 + kAx̂ � bk2

I so for any x, kAx � bk2 � kAx̂ � bk2

I if equality holds, A(x � x̂) = 0, which implies x = x̂ since columns of A are
linearly independent
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Computing least squares approximate solutions

I compute QR factorization of A: A = QR (2mn
2 flops)

I QR factorization exists since columns of A are linearly independent

I to compute x̂ = A
†
b = R

�1
Q

T
b

– form Q
T

b (2mn flops)
– compute x̂ = R

�1(QT
b) via back substitution (n2 flops)

I total complexity 2mn
2 flops

I identical to algorithm for solving Ax = b for square invertible A

I but when A is tall, gives least squares approximate solution
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Advertising purchases

I m demographics groups we want to advertise to

I v
des is m-vector of target views or impressions

I n-vector s gives spending on n advertising channels

I m ⇥ n matrix R gives demographic reach of channels

I Rij is number of views per dollar spent (in 1000/$)

I v = Rs is m-vector of views across demographic groups

I kvdes � Rsk/pm is RMS deviation from desired views

I we’ll use least squares spending ŝ = R
†
v

des (need not be � 0)
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Example

I m = 10 groups, n = 3 channels
I target views vector v

des = 103 ⇥ 1
I optimal spending is ŝ = (62,100,1443)
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Illumination
I n lamps illuminate an area divided in m regions
I Aij is illumination in region i if lamp j is on with power 1, other lamps are o�
I xj is power of lamp j

I (Ax)i is illumination level at region i

I bi is target illumination level at region i
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figure shows lamp positions for
example with

m = 252, n = 10
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Illumination
I equal lamp powers (x = 1)
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I least squares solution x̂, with b = 1
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