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Setup

I we believe a scalar y and an n-vector x are related by model

y ⇡ f (x)

I x is called the independent variable

I y is called the outcome or response variable

I f : Rn ! R gives the relation between x and y

I often x is a feature vector, and y is something we want to predict

I we don’t know f , which gives the ‘true’ relationship between x and y
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Data

I we are given some data

x
(1) , . . . ,x(N) , y

(1) , . . . ,y(N)

also called observations, examples, samples, or measurements

I x
(i) ,y(i) is ith data pair

I x
(i)
j

is the jth component of ith data point x
(i)
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Model

I choose model f̂ : Rn ! R, a guess or approximation of f

I linear in the parameters model form:

f̂ (x) = ✓1f1(x) + · · · + ✓pfp(x)

I fi : Rn ! R are basis functions that we choose

I ✓i are model parameters that we choose

I ŷ
(i) = f̂ (x(i) ) is (the model’s) prediction of y

(i)

I we’d like ŷ
(i) ⇡ y

(i) , i.e., model is consistent with observed data
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Least squares data fitting

I prediction error or residual is ri = y
(i) � ŷ

(i)

I least squares data fitting: choose model parameters ✓i to minimize RMS
prediction error on data set

 
(r(1) )2 + · · · + (r(N) )2

N

!1/2

I this can be formulated (and solved) as a least squares problem
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Least squares data fitting

I express y
(i) , ŷ

(i) , and r
(i) as N-vectors

– y
d = (y(1) , . . . ,y(N) ) is vector of outcomes

– ŷ
d = (ŷ(1) , . . . , ŷ(N) ) is vector of predictions

– r
d = (r(1) , . . . ,r(N) ) is vector of residuals

I rms(rd) is RMS prediction error

I define N ⇥ p matrix A with elements Aij = fj(x(i) ), so ŷ
d = A✓

I least squares data fitting: choose ✓ to minimize

krdk2 = kyd � ŷ
dk2 = kyd � A✓k2 = kA✓ � y

dk2

I ✓̂ = (AT
A)�1

A
T

y (if columns of A are linearly independent)

I kA✓̂ � yk2/N is minimum mean-square (fitting) error
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Fitting a constant model

I simplest possible model: p = 1, f1(x) = 1, so model f̂ (x) = ✓1 is a constant

I A = 1, so
✓̂1 = (1T1)�11T

y
d = (1/N)1T

y
d = avg(yd)

I the mean of y
(1) , . . . ,y(N) is the least squares fit by a constant

I MMSE is std(yd)2; RMS error is std(yd)

I more sophisticated models are judged against the constant model
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Fitting univariate functions

I when n = 1, we seek to approximate a function f : R! R

I we can plot the data (xi,yi) and the model function ŷ = f̂ (x)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.8



Straight-line fit

I p = 2, with f1(x) = 1, f2(x) = x

I model has form f̂ (x) = ✓1 + ✓2x

I matrix A has form

A =

26666666664

1 x
(1)

1 x
(2)

...
...

1 x
(N)

37777777775
I can work out ✓̂1 and ✓̂2 explicitly:

f̂ (x) = avg(yd) + ⇢
std(yd)
std(xd)

(x � avg(xd))

where x
d = (x(1) , . . . ,x(N) )
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Example

x

f̂ (x)
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Asset ↵ and �

I x is return of whole market, y is return of a particular asset

I write straight-line model as

ŷ = (rrf + ↵) + �(x � µmkt)

– µmkt is the average market return
– r

rf is the risk-free interest rate
– several other slightly di�erent definitions are used

I called asset ‘↵’ and ‘�’, widely used
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Time series trend

I y
(i) is value of quantity at time x

(i) = i

I ŷ
(i) = ✓̂1 + ✓̂2i, i = 1, . . . ,N, is called trend line

I y
d � ŷ

d is called de-trended time series

I ✓̂2 is trend coe�cient
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World petroleum consumption
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Polynomial fit

I fi(x) = x
i�1, i = 1, . . . ,p

I model is a polynomial of degree less than p

f̂ (x) = ✓1 + ✓2x + · · · + ✓px
p�1

(here x
i means scalar x to ith power; x

(i) is ith data point)

I A is Vandermonde matrix

A =

26666666664

1 x
(1) · · · (x(1) )p�1

1 x
(2) · · · (x(2) )p�1

...
...

...
1 x

(N) · · · (x(N) )p�1

37777777775
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Example

N = 100 data points

x

f̂ (x) degree 2 (p = 3)

x

f̂ (x) degree 6

x

f̂ (x)
degree 10

x

f̂ (x) degree 15

Introduction to Applied Linear Algebra Boyd & Vandenberghe 13.15



Regression as general data fitting

I regression model is a�ne function ŷ = f̂ (x) = x
T � + v

I fits general fitting form with basis functions

f1(x) = 1, fi(x) = xi�1, i = 2, . . . ,n + 1

so model is
ŷ = ✓1 + ✓2x1 + · · · + ✓n+1xn = x

T✓2:n + ✓1

I � = ✓2:n+1, v = ✓1
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General data fitting as regression

I general fitting model f̂ (x) = ✓1f1(x) + · · · + ✓pfp(x)

I common assumption: f1(x) = 1

I same as regression model f̂ (x̃) = x̃
T � + v, with

– x̃ = (f2(x), . . . , fp(x)) are ‘transformed features’
– v = ✓1, � = ✓2:p
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Auto-regressive time series model

I time zeries z1,z2, . . .

I auto-regressive (AR) prediction model:

ẑt+1 = ✓1zt + · · · + ✓Mzt�M+1, t = M,M + 1, . . .

I M is memory of model

I ẑt+1 is prediction of next value, based on previous M values

I we’ll choose � to minimize sum of squares of prediction errors,

(ẑM+1 � zM+1)2 + · · · + (ẑT � zT )2

I put in general form with

y
(i) = zM+i, x

(i) = (zM+i�1, . . . ,zi), i = 1, . . . ,T �M
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Example

I hourly temperature at LAX in May 2016, length 744

I average is 61.76�F, standard deviation 3.05�F

I predictor ẑt+1 = zt gives RMS error 1.16�F

I predictor ẑt+1 = zt�23 gives RMS error 1.73�F

I AR model with M = 8 gives RMS error 0.98�F
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Example

solid line shows one-hour ahead predictions from AR model, first 5 days
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Generalization

basic idea:
I goal of model is not to predict outcome for the given data
I instead it is to predict the outcome on new, unseen data

I a model that makes reasonable predictions on new, unseen data has
generalization ability, or generalizes

I a model that makes poor predictions on new, unseen data is said to su�er
from over-fit
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Validation

a simple and e�ective method to guess if a model will generalize

I split original data into a training set and a test set

I typical splits: 80%/20%, 90%/10%

I build (‘train’) model on training data set

I then check the model’s predictions on the test data set

I (can also compare RMS prediction error on train and test data)

I if they are similar, we can guess the model will generalize
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Validation

I can be used to choose among di�erent candidate models, e.g.

– polynomials of di�erent degrees
– regression models with di�erent sets of regressors

I we’d use one with low, or lowest, test error
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Example

models fit using training set of 100 points; plots show test set of 100 points

x

f̂ (x)
degree 2

x

f̂ (x)
degree 6

x

f̂ (x)
degree 10

x

f̂ (x)
degree 15
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Example

I suggests degree 4, 5, or 6 are reasonable choices
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Cross validation

to carry out cross validation:
I divide data into 10 folds

I for i = 1, . . . ,10, build (train) model using all folds except i

I test model on data in fold i

interpreting cross validation results:
I if test RMS errors are much larger than train RMS errors, model is over-fit
I if test and train RMS errors are similar and consistent, we can guess the

model will have a similar RMS error on future data
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Example

I house price, regression fit with x = (area/1000 ft.2, bedrooms)
I 774 sales, divided into 5 folds of 155 sales each
I fit 5 regression models, removing each fold

Model parameters RMS error

Fold v �1 �2 Train Test

1 60.65 143.36 �18.00 74.00 78.44
2 54.00 151.11 �20.30 75.11 73.89
3 49.06 157.75 �21.10 76.22 69.93
4 47.96 142.65 �14.35 71.16 88.35
5 60.24 150.13 �21.11 77.28 64.20
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Feature engineering

I start with original or base feature n-vector x

I choose basis functions f1, . . . , fp to create ‘mapped’ feature p-vector

(f1(x), . . . , fp(x))

I now fit linear in parameters model with mapped features

ŷ = ✓1f1(x) + · · · + ✓pfp(x)

I check the model using validation
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Transforming features

I standardizing features: replace xi with

(xi � bi)/ai

– bi ⇡ mean value of the feature across the data
– ai ⇡ standard deviation of the feature across the data

new features are called z-scores

I log transform: if xi is nonnegative and spans a wide range, replace it with

log(1 + xi)

I hi and lo features: create new features given by

max{x1 � b,0}, min{x1 � a,0}

(called hi and lo versions of original feature xi)
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Example

I house price prediction

I start with base features
– x1 is area of house (in 1000ft.2)
– x2 is number of bedrooms
– x3 is 1 for condo, 0 for house
– x4 is zip code of address (62 values)

I we’ll use p = 8 basis functions:
– f1(x) = 1, f2(x) = x1, f3(x) = max{x1 � 1.5,0}
– f4(x) = x2, f5(x) = x3
– f6(x), f7(x), f8(x) are Boolean functions of x4 which encode 4 groups of

nearby zip codes (i.e., neighborhood)

I five fold model validation
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Example

Model parameters RMS error

Fold ✓1 ✓2 ✓3 ✓4 ✓5 ✓6 ✓7 ✓8 Train Test

1 122.35 166.87 �39.27 �16.31 �23.97 �100.42 �106.66 �25.98 67.29 72.78
2 100.95 186.65 �55.80 �18.66 �14.81 �99.10 �109.62 �17.94 67.83 70.81
3 133.61 167.15 �23.62 �18.66 �14.71 �109.32 �114.41 �28.46 69.70 63.80
4 108.43 171.21 �41.25 �15.42 �17.68 �94.17 �103.63 �29.83 65.58 78.91
5 114.45 185.69 �52.71 �20.87 �23.26 �102.84 �110.46 �23.43 70.69 58.27
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