13. Least squares data fitting



Outline

Least squares model fitting
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Setup

> we believe a scalar y and an n-vector x are related by model

y = f(x)
» x is called the independent variable
> vy is called the outcome or response variable
» f: R" — R gives the relation between x and y
» often x is a feature vector, and y is something we want to predict

» we don’t know f, which gives the ‘true’ relationship between x and y
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Data

> we are given some data

(1)

N
e, X y ,...,y()

ey

also called observations, examples, samples, or measurements
> xW,yW is ith data pair

- x]@ is the jth component of ith data point x®*)
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Model

» choose model f : R* — R, a guess or approximation of f

> linear in the parameters model form:

F@) = 601f1(x) + -+ + Of ()
» f; : R" — R are basis functions that we choose
> 6; are model parameters that we choose
» 5@ = £(xD) is (the model’s) prediction of y

» we'd like §% ~ y¥) | je.. model is consistent with observed data
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Least squares data fitting

> prediction error or residual is r; =y — $®

> least squares data fitting: choose model parameters 6; to minimize RMS
prediction error on data set

(FrD)2 4o (Fy2)\ 12
N

> this can be formulated (and solved) as a least squares problem
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Least squares data fitting

- express y® 50 and r) as N-vectors

—~ y = (y\D, ..., y®™)) is vector of outcomes
— 34 =W, .., 5™y is vector of predictions
— 4= (r(l),. .. ,r(N)) is vector of residuals

» rms(r%) is RMS prediction error
> define N x p matrix A with elements A;; = f;(x\"), so ¢ = A6
> |east squares data fitting: choose 6 to minimize

1917 = 1y® = 39017 = 1ly* — Adl1* = 1146 - y*)1?
» 6 = (ATA)"'ATy (if columns of A are linearly independent)

> ||A8 — y||?/N is minimum mean-square (fitting) error
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Fitting a constant model

» simplest possible model: p = 1, f1(x) = 1, so modelf(x) = ¢, is a constant

» A=1, so
01 = AT1D)"17y? = (1/N)1Ty? = avg(y?)

» the mean of y(, ..., y®™) is the least squares fit by a constant
> MMSE is std(y%)%; RMS error is std(y9)

» more sophisticated models are judged against the constant model
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Fitting univariate functions

» when n = 1, we seek to approximate a functionf : R - R

> we can plot the data (x;,y;) and the model function = f(x)
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Straight-line fit

» p=2,withfi(x) =1, h(x) =x
> model has form f(x) = 0 + 0x

» matrix A has form

1 x(D
e
A =
[ x®

» can work out §; and 8, explicitly:

std(y%)
std(xd)

fx) =avg(y!) + p (x — avg(x?))

where x4 = (x(l),. .. ,x(N))
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Example

A

J(x)
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Asset @ and S

> x is return of whole market, y is return of a particular asset

» write straight-line model as

=" +a)+ Blx— u™

— u™Kis the average market return

— T is the risk-free interest rate
— several other slightly different definitions are used

» called asset ‘a’ and ‘S’, widely used
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Time series trend

» v is value of quantity at time x(© =
» $0 =@, +62i, i=1,...,N,is called trend line
» y4 — 94 is called de-trended time series

» 0, is trend coefficient
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Petroleum consumption

World petroleum consumption

Consumption
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Polynomial fit

> fi(x)=x"1, i=1,...,p
» model is a polynomial of degree less than p
F(xX) =601+ 6x+---+ prp_l
(here x means scalar x to ith power; x¥) is ith data point)

» A is Vandermonde matrix

1 M Dyl ]
| 1 x® o @yl
L 2™ Wyl
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N = 100 data points

degree 2 (p = 3)

fx)

Example

f)

f)
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Regression as general data fitting

> regression model is affine function $ = f(x) = xT 8 + v
» fits general fitting form with basis functions
filkx) =1, fix) =xi—1, i=2,...,n+1

so model is
j\i = 91 + 92)61 + -+ 0n+1xn = xTHQ;n + 01

> B=02,11,v=20
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General data fitting as regression

» general fitting modelf(x) = 01f1(x) + -+ 6,1, (x)
» common assumption: fi(x) =1

> same as regression modelf(a”c) = %' B + v, with

- X = (f(x),....fp(x)) are transformed features’
- V:91a,8:92:p
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Auto-regressive time series model

> time zeries 71,20, . ..

» auto-regressive (AR) prediction model:
Zi1 =0z + -+ Oyz—pmye1, t=MM+1,...
» M is memory of model
> Z;+1 IS prediction of next value, based on previous M values
» we’'ll choose S to minimize sum of squares of prediction errors,
Game1 —zua1)* + -+ Gr —z7)°
> put in general form with

y(i) = TM+i» XD = (TMsizls---52), 1=1,....,T—M
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Example

» hourly temperature at LAX in May 2016, length 744
» average is 61.76°F, standard deviation 3.05°F

» predictor Z;+1 = z; gives RMS error 1.16°F

» predictor Z;11 = z;-23 gives RMS error 1.73°F

> AR model with M = 8 gives RMS error 0.98°F
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Example

solid line shows one-hour ahead predictions from AR model, first 5 days
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Outline

Validation
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Generalization

basic idea:
» goal of model is not to predict outcome for the given data
> instead it is to predict the outcome on new, unseen data

» a model that makes reasonable predictions on new, unseen data has
generalization ability, or generalizes

» a model that makes poor predictions on new, unseen data is said to suffer
from over-fit
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Validation

a simple and effective method to guess if a model will generalize
> split original data into a training set and a test set

> typical splits: 80%/20%, 90%/10%

> build (‘train’) model on training data set

» then check the model’s predictions on the test data set

» (can also compare RMS prediction error on train and test data)

» if they are similar, we can guess the model will generalize
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Validation

» can be used to choose among different candidate models, e.g.

— polynomials of different degrees
— regression models with different sets of regressors

» we’d use one with low, or lowest, test error
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Example

models fit using training set of 100 points; plots show test set of 100 points

degree 2 degree 6

F(x)

F)
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Example

> suggests degree 4, 5, or 6 are reasonable choices
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Cross validation

to carry out cross validation:

» divide data into 10 folds

» fori=1,...,10, build (train) model using all folds except i
» test model on data in fold i

interpreting cross validation results:
> if test RMS errors are much larger than train RMS errors, model is over-fit

> if test and train RMS errors are similar and consistent, we can guess the
model will have a similar RMS error on future data
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> house price, regression fit with x = (area/1000 ft.>, bedrooms)

Example

» 774 sales, divided into 5 folds of 155 sales each

> fit 5 regression models, removing each fold

Model parameters RMS error
Fold 1% B B> Train Test
1 60.65 143.36 —-18.00 74.00 78.44
2 54.00 151.11 -20.30 75.11 73.89
3 49.06 157.75 -21.10 76.22 69.93
4 47.96 142.65 —-14.35 71.16 88.35
5 60.24 150.13 -21.11 77.28 64.20
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Outline

Feature engineering
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Feature engineering

» start with original or base feature n-vector x

> choose basis functions fi,. . . ,f, to create ‘mapped’ feature p-vector

(1), .. fp(x))

» now fit linear in parameters model with mapped features

yzeLfl(x)+"'+6pp(x)

» check the model using validation
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Transforming features

» standardizing features: replace x; with

(x; — b;)/ai

— b; = mean value of the feature across the data
— a; =~ standard deviation of the feature across the data

new features are called z-scores

» log transform: if x; is nonnegative and spans a wide range, replace it with
log(1 + x;)
» hi and lo features: create new features given by
max{x; — b,0}, min{x; — a,0}
(called hi and lo versions of original feature x;)
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Example

> house price prediction

» start with base features

— x1 is area of house (in 1000ft.2)

— Xp is number of bedrooms

— x3 is 1 for condo, O for house

— X4 is zip code of address (62 values)

» we'll use p = 8 basis functions:

- i) =1, (%) = x1, f3(x) = max{x; — 1.5,0}

= J4(x) = x2, f5(x) = x3

— f6(x), f7(x), fg(x) are Boolean functions of x4 which encode 4 groups of
nearby zip codes (i.e., neighborhood)

» five fold model validation
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Example

Model parameters RMS error
Fold 64 6> 03 64 05 O6 67 O3 Train  Test
1 122.35 166.87 -39.27 —-16.31 -23.97 -100.42 —-106.66 —-25.98 67.29 72.78
2 100.95 186.65 —55.80 —18.66 —14.81 -99.10 -109.62 —-17.94 67.83 70.81
3 133.61 167.15 -23.62 —-18.66 —14.71 —109.32 —-114.41 -28.46 69.70 63.80
4 108.43 171.21 —-41.25 —-15.42 —-17.68 -94.17 -103.63 -29.83 65.58 78.91
5 114.45 185.69 -52.71 -20.87 -23.26 —102.84 —110.46 -23.43 70.69 58.27
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