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Classification

I data fitting with outcome that takes on (non-numerical) values like
– ���� or �����
– ���� or ��� ����
– ���, �����, or �����

I outcome values are called labels or categories

I data fitting is called classification

I we start with case when there are two possible outcomes

I called Boolean or 2-way classification

I we encode outcomes as +1 (����) and �1 (�����)

I classifier has form ŷ = f̂ (x), f : Rn ! {�1,+1}
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Applications

I email spam detection
– x contains features of an email message (word counts, . . . )

I financial transaction fraud detection
– x contains features of proposed transaction, initiator

I document classification (say, politics or not)
– x is word count histogram of document

I disease detection
– x contains patient features, results of medical tests

I digital communications receiver
– y is transmitted bit; x contain n measurements of received signal
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Prediction errors

I data point (x,y), predicted outcome ŷ = f̂ (x)

I only four possibilities:
– True positive. y = +1 and ŷ = +1.
– True negative. y = �1 and ŷ = �1.

(in these two cases, the prediction is correct)
– False positive. y = �1 and ŷ = +1.
– False negative. y = +1 and ŷ = �1.

(in these two cases, the prediction is wrong)

I the errors have many other names, like Type I and Type II

Introduction to Applied Linear Algebra Boyd & Vandenberghe 14.4



Confusion matrix

I given data set x
(1) , . . . ,x(N) , y

(1) , . . . ,y(N) and classifier f̂

I count each of the four outcomes

ŷ = +1 ŷ = �1 Total

y = +1 Ntp Nfn Np
y = �1 Nfp Ntn Nn

All Ntp + Nfp Nfn + Ntp N

I o�-diagonal terms are prediction errors

I many error rates and accuracy measures are used
– error rate is (Nfp + Nfn)/N
– true positive (or recall) rate is Ntp/Np
– false positive rate (or false alarm rate) is Nfp/Nn

I a proposed classifier is judged by its error rate(s) on a test set
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Example

I spam filter performance on a test set (say)

ŷ = +1 (����) ŷ = �1 (not ����) Total

y = +1 (����) 95 32 127
y = �1 (not ����) 19 1120 1139

All 114 1152 1266

I error rate is (19 + 32)/1266 = 4.03%

I false positive rate is 19/1139 = 1.67%
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Least squares classification

I fit model f̃ to encoded (±1) y
(i) values using standard least squares data

fitting

I f̃ (x) should be near +1 when y = +1, and near �1 when y = �1

I f̃ (x) is a number

I use model f̂ (x) = sign(f̃ (x))

I (size of f̃ (x) is related to the ‘confidence’ in the prediction)
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Handwritten digits example

I MNIST data set of 70000 28 ⇥ 28 images of digits 0, . . . , 9

I divided into training set (60000) and test set (10000)
I x is 494-vector, constant 1 plus the 493 pixel values with nonzero values in

at least 600 training examples
I y = +1 if digit is 0; �1 otherwise
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Least squares classifier results

I training set results (error rate 1.6%)

ŷ = +1 ŷ = �1 Total

y = +1 5158 765 5923
y = �1 167 53910 54077

All 5325 54675 60000

I test set results (error rate 1.6%)

ŷ = +1 ŷ = �1 Total

y = +1 864 116 980
y = �1 42 8978 9020

All 906 9094 10000

I we can likely achieve 1.6% error rate on unseen images
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Distribution of least squares fit

distribution of values of f̃ (x(i) ) over training set
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Coe�cients in least squares classifier
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Skewed decision threshold

I use predictor f̂ (x) = sign(f̃ (x) � ↵), i.e.,

f̂ (x) =
(
+1 f̃ (x) � ↵
�1 f̃ (x) < ↵

I ↵ is the decision threshold

I for positive ↵, false positive rate is lower but so is true positive rate

I for negative ↵, false positive rate is higher but so is true positive rate

I trade o� curve of true positive versus false positive rates is called receiver

operating characteristic (ROC)
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Example
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ROC curve
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Multi-class classifiers

I we have K > 2 possible labels, with label set {1, . . . ,K}
I predictor is f̂ : Rn ! {1, . . . ,K}
I for given predictor and data set, confusion matrix is K ⇥ K

I some o�-diagonal entries may be much worse than others
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Examples

I handwritten digit classification
– guess the digit written, from the pixel values

I marketing demographic classification
– guess the demographic group, from purchase history

I disease diagnosis
– guess diagnosis from among a set of candidates, from test results, patient

features

I translation word choice
– choose how to translate a word into several choices, given context features

I document topic prediction
– guess topic from word count histogram
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Least squares multi-class classifier

I create a least squares classifier for each label versus the others

I take as classifier
f̂ (x) = argmax

`2 {1, ...,K }
f̃` (x)

(i.e., choose ` with largest value of f̃` (x))

I for example, with

f̃1(x) = �0.7, f̃2(x) = +0.2, f̃3(x) = +0.8

we choose f̂ (x) = 3
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Handwritten digit classification

confusion matrix, test set

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 944 0 1 2 2 8 13 2 7 1 980
1 0 1107 2 2 3 1 5 1 14 0 1135
2 18 54 815 26 16 0 38 22 39 4 1032
3 4 18 22 884 5 16 10 22 20 9 1010
4 0 22 6 0 883 3 9 1 12 46 982
5 24 19 3 74 24 656 24 13 38 17 892
6 17 9 10 0 22 17 876 0 7 0 958
7 5 43 14 6 25 1 1 883 1 49 1028
8 14 48 11 31 26 40 17 13 756 18 974
9 16 10 3 17 80 0 1 75 4 803 1009
All 1042 1330 887 1042 1086 742 994 1032 898 947 10000

error rate is around 14% (same as for training set)
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Adding new features

I let’s add 5000 random features (!), max{(Rx)j,0}
– R is 5000 ⇥ 494 matrix with entries ±1, chosen randomly

I now use least squares classification with 5494 feature vector

I results: training set error 1.5%, test set error 2.6%

I can do better with a little more thought in generating new features

I indeed, even better than humans can do (!!)
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Results with new features

confusion matrix, test set

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 972 0 0 2 0 1 1 1 3 0 980
1 0 1126 3 1 1 0 3 0 1 0 1135
2 6 0 998 3 2 0 4 7 11 1 1032
3 0 0 3 977 0 13 0 5 8 4 1010
4 2 1 3 0 953 0 6 3 1 13 982
5 2 0 1 5 0 875 5 0 3 1 892
6 8 3 0 0 4 6 933 0 4 0 958
7 0 8 12 0 2 0 1 992 3 10 1028
8 3 1 3 6 4 3 2 2 946 4 974
9 4 3 1 12 11 7 1 3 3 964 1009
All 997 1142 1024 1006 977 905 956 1013 983 997 10000
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