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Multi-objective least squares

I goal: choose n-vector x so that k norm squared objectives

J1 = kA1x � b1k2, . . . , Jk = kAkx � bkk2

are all small

I Ai is an mi ⇥ n matrix, bi is an mi-vector, i = 1, . . . ,k

I Ji are the objectives in a multi-objective optimization problem

(also called a multi-criterion problem)

I could choose x to minimize any one Ji, but we want one x that makes them
all small
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Weighted sum objective

I choose positive weights �1, . . . ,�k and form weighted sum objective

J = �1J1 + · · · + �kJk = �1kA1x � b1k2 + · · · + �kkAkx � bkk2

I we’ll choose x to minimize J

I we can take �1 = 1, and call J1 the primary objective

I interpretation of �i: how much we care about Ji being small, relative to
primary objective

I for a bi-criterion problem, we will minimize

J1 + �J2 = kA1x � b1k2 + �kA2x � b2k2
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Weighted sum minimization via stacking

I write weighted-sum objective as

J =

���������

266666664

p
�1(A1x � b1)

...p
�k (Akx � bk)

377777775

���������
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I so we have J = kÃx � b̃k2, with

Ã =

266666664

p
�1A1
...p
�kAk

377777775
, b̃ =

266666664

p
�1b1
...p
�kbk

377777775
I so we can minimize J using basic (‘single-criterion’) least squares
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Weighted sum solution

I assuming columns of Ã are independent,

x̂ = (ÃT
Ã)�1

Ã
T

b̃

= (�1A
T

1 A1 + · · · + �kA
T

k
Ak)�1(�1A

T

1 b1 + · · · + �kA
T

k
bk)

I can compute x̂ via QR factorization of Ã

I Ai can be wide, or have dependent columns
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Optimal trade-o� curve

I bi-criterion problem with objectives J1, J2

I let x̂(�) be minimizer of J1 + �J2

I called Pareto optimal: there is no point z that satisfies

J1(z) < J1(x̂(�)), J2(z) < J2(x̂(�))

i.e., no other point x beats x̂ on both objectives

I optimal trade-o� curve: (J1(x̂(�)),J2(x̂(�))) for � > 0
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Example

A1 and A2 both 10 ⇥ 5
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Objectives versus � and optimal trade-o� curve
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Using multi-objective least squares

I identify the primary objective
– the basic quantity we want to minimize

I choose one or more secondary objectives
– quantities we’d also like to be small, if possible
– e.g., size of x, roughness of x, distance from some given point

I tweak/tune the weights until we like (or can tolerate) x̂(�)

I for bi-criterion problem with J = J1 + �J2:
– if J2 is too big, increase �
– if J1 is too big, decrease �
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Control

I n-vector x corresponds to actions or inputs

I m-vector y corresponds to results or outputs

I inputs and outputs are related by a�ne input-output model

y = Ax + b

I A and b are known (from analytical models, data fitting . . . )

I the goal is to choose x (which determines y), to optimize multiple
objectives on x and y
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Multi-objective control

I typical primary objective: J1 = ky � y
desk2, where y

des is a given desired or
target output

I typical secondary objectives:
– x is small: J2 = kxk2
– x is not far from a nominal input: J2 = kx � x

nomk2
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Product demand shaping

I we will change prices of n products by n-vector �price

I this induces change in demand �dem = E
d�price

I E
d is the n ⇥ n price elasticity of demand matrix

I we want J1 = k�dem � �tark2 small

I and also, we want J2 = k�pricek2 small

I so we minimize J1 + �J2, and adjust � > 0

I trades o� deviation from target demand and price change magnitude
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Robust control

I we have K di�erent input-output models (a.k.a. scenarios)

y
(k) = A

(k)
x + b

(k) , k = 1, . . . ,K

I these represent uncertainty in the system

I y
(k) is the output with input x, if system model k is correct

I average cost across the models:

1
K

KX

k=1

ky(k) � y
desk2

I can add terms for x as well, e.g., �kxk2

I yields choice of x that does well under all scenarios
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Estimation

I measurement model: y = Ax + v

I n-vector x contains parameters we want to estimate

I m-vector y contains the measurements

I m-vector v are (unknown) noises or measurement errors

I m ⇥ n matrix A connects parameters to measurements

I basic least squares estimation: assuming v is small (and A has
independent columns), we guess x by minimizing J1 = kAx � yk2
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Regularized inversion

I can get far better results by incorporating prior information about x into
estimation, e.g.,

– x should be not too large
– x should be smooth

I express these as secondary objectives:
– J2 = kxk2 (‘Tikhonov regularization’)
– J2 = kDxk2

I we minimize J1 + �J2

I adjust � until you like the results

I curve of x̂(�) versus � is called regularization path

I with Tikhonov regularization, works even when A has dependent columns
(e.g., when it is wide)
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Image de-blurring

I x is an image

I A is a blurring operator

I y = Ax + v is a blurred, noisy image

I least squares de-blurring: choose x to minimize

kAx � yk2 + �(kDvxk2 + kDhxk2)

Dv, Dh are vertical and horizontal di�erencing operations

I � controls smoothing of de-blurred image
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Example

blurred, noisy image regularized inversion with � = 0.007

Image credit: NASA
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Regularization path

� = 10�6 � = 10�4
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Regularization path

� = 10�2 � = 1
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Tomography

I x represents values in region of interest of n voxels (pixels)

I y = Ax + v are measurements of integrals along lines through region

yi =

nX

i=1

Aijxj + vi

I Aij is the length of the intersection of the line in measurement i with voxel j

line in measurement i

x1 x2

x6

Introduction to Applied Linear Algebra Boyd & Vandenberghe 15.22



Least squares tomographic reconstruction

I primary objective is kAx � yk2

I regularization terms capture prior information about x

I for example, if x varies smoothly over region, use Dirichlet energy for graph
that connects each voxel to its neighbors
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Example

I left: 4000 lines (100 points, 40 lines per point)

I right: object placed in the square region on the left

I region of interest is divided in 10000 pixels
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Regularized least squares reconstruction

� = 10�2 � = 10�1 � = 1

� = 5 � = 10 � = 100
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Motivation for regularization

I consider data fitting model (of relationship y ⇡ f (x))

f̂ (x) = ✓1f1(x) + · · · + ✓pfp(x)

with f1(x) = 1

I ✓i is the sensitivity of f̂ (x) to fi(x)

I so large ✓i means the model is very sensitive to fi(x)

I ✓1 is an exception, since f1(x) = 1 never varies

I so, we don’t want ✓2, . . . ,✓p to be too large
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Regularized data fitting

I suppose we have training data x
(1) , . . . ,x(N) , y

(1) , . . . ,y(N)

I express fitting error on data set as A✓ � y

I regularized data fitting: choose ✓ to minimize

kA✓ � yk2 + �k✓2:pk2

I � > 0 is the regularization parameter

I for regression model ŷ = X
T � + v1, we minimize

kXT � + v1 � yk2 + �k �k2

I choose � by validation on a test set
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Example
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I solid line is signal used to generate synthetic (simulated) data
I 10 blue points are used as training set; 20 red points are used as test set
I we fit a model with five parameters ✓1, . . . , ✓5:

f̂ (x) = ✓1 +
4X

k=1

✓k+1 cos(!kx + �k) (with given !k, �k)
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Result of regularized least squares fit
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I minimum test RMS error is for � around 0.08
I increasing � ‘shrinks’ the coe�cients ✓2, . . . , ✓5
I dashed lines show coe�cients used to generate the data
I for � near 0.08, estimated coe�cients are close to these ‘true’ values
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