15. Multi-objective least squares
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Multi-objective least squares problem
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Multi-objective least squares

» goal: choose n-vector x so that k norm squared objectives
Ji=1Ax =bil%, ..., T = Aex = bill?
are all small
» A; is an m; X n matrix, b; is an m;-vector,i = 1,....k

» J; are the objectives in a multi-objective optimization problem
(also called a muilti-criterion problem)

» could choose x to minimize any one J;, but we want one x that makes them
all small
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Weighted sum objective

» choose positive weights A1,. .., A; and form weighted sum objective
J=0Jp+ -+ Ldi = Ll Aix = byl)* + -+ + Al Aex — by ||
» we’ll choose x to minimize J

» we can take A; = 1, and call J; the primary objective

> interpretation of A;: how much we care about J; being small, relative to
primary objective

» for a bi-criterion problem, we will minimize

Ji + A5 = |[A1x = by ||> + A|Axx — by)?
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Weighted sum minimization via stacking

> write weighted-sum objective as

: 1112
VA1 (A1x — by)
J =
- VAk(Arx = bi)
> so we have J = ||Ax — b||?, with
[ VLA Vb |
A = , [~9 =
VARAL | ] V Arby |

> SO we can minimize J using basic (‘single-criterion’) least squares
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Weighted sum solution

> assuming columns of A are independent,

2 = (ATA)1ATh
= (LATA + -+ BATAD TN (ATD + -+ LAl DY)

» can compute & via QR factorization of A

» A; can be wide, or have dependent columns
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Optimal trade-off curve

> bi-criterion problem with objectives Ji, J>
> let X(A) be minimizer of J1 + AJ>
» called Pareto optimal: there is no point z that satisfies
J1(2) < J1(x(4)), J2(z) < J2(x(2))
i.e., no other point x beats X on both objectives

» optimal trade-off curve: (J1(x(A1)),J2(x(1))) forA > 0
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Example

A; and A both 10 x 5
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Objectives versus A and optimal trade-off curve
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Using multi-objective least squares

> identify the primary objective
— the basic quantity we want to minimize

» choose one or more secondary objectives

— quantities we’d also like to be small, if possible
— e.g., size of x, roughness of x, distance from some given point

» tweak/tune the weights until we like (or can tolerate) x(A1)

» for bi-criterion problem with J = J| + AJ5:

— if J, is too big, increase A
— if Jy is too big, decrease A
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Outline

Control

Introduction to Applied Linear Algebra Boyd & Vandenberghe 15.10



Control

> n-vector x corresponds to actions or inputs
> m-vector y corresponds to results or outputs
> inputs and outputs are related by affine input-output model

y=Ax+b

» A and b are known (from analytical models, data fitting . ..)

> the goal is to choose x (which determines y), to optimize multiple
objectives on x and y
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Multi-objective control

des | | 2 des

» typical primary objective: J; = ||y — y
target output

, Where y*** is a given desired or

> typical secondary objectives:
— xissmall: J, = ||x||2

— x is not far from a nominal input: Jo = ||x — xhom||2
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Product demand shaping

» we will change prices of n products by n-vector §Pric
> this induces change in demand %™ = Edgprice

» EYis the n X n price elasticity of demand matrix

> we want J; = ||69™ — 5|2 small

» and also, we want J, = ||6P"¢||2 small

> SO we minimize J; + AJ>, and adjust 4 > 0

» trades off deviation from target demand and price change magnitude
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Robust control

» we have K different input-output models (a.k.a. scenarios)
YO =A®x+p® k=1,...,K

> these represent uncertainty in the system
» y s the output with input x, if system model k is correct

> average cost across the models:

1 K
~ Doy =yt ?
k=1

» can add terms for x as well, e.g., /l||x||2

> yields choice of x that does well under all scenarios
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Estimation and inversion
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Estimation

» measurement model: y = Ax +v

> n-vector x contains parameters we want to estimate

> m-vector y contains the measurements

> m-vector v are (unknown) noises or measurement errors
> m X n matrix A connects parameters to measurements

» basic least squares estimation: assuming v is small (and A has
independent columns), we guess x by minimizing J; = ||Ax — y||?
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Regularized inversion

> can get far better results by incorporating prior information about x into
estimation, e.g.,

— x should be not too large
— x should be smooth

> express these as secondary objectives:

— Jr = ||x||2 (‘Tikhonov regularization’)
- Jp = ||Dx||?

» we minimize J1 + AJ>
» adjust A until you like the results
» curve of Xx(A1) versus A is called regularization path

» with Tikhonov regularization, works even when A has dependent columns
(e.g., when it is wide)
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Image de-blurring

> Xx is an image
» A is a blurring operator
» y = Ax + vis a blurred, noisy image

» least squares de-blurring: choose x to minimize
1Ax = yII* + AUIDyx]1> + | Dyx||)

Dy, Dy, are vertical and horizontal differencing operations

» A controls smoothing of de-blurred image
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Example

blurred, noisy image regularized inversion with 4 = 0.007

Image credit: NASA
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Regularization path
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Regularization path
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Tomography

> x represents values in region of interest of n voxels (pixels)

> y = Ax + v are measurements of integrals along lines through region

n
Vi = ZAijxj + Vi
i=1

> Ajj is the length of the intersection of the line in measurement i with voxel j

X1 | X2
X6 _— line in measurement i
—
L~
//
J/
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Least squares tomographic reconstruction

> primary objective is ||Ax — y]|?
> regularization terms capture prior information about x

» for example, if x varies smoothly over region, use Dirichlet energy for graph
that connects each voxel to its neighbors
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Example
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5 =1

left: 4000 lines (100 points, 40 lines per point)
> right: object placed in the square region on the left

> region of interest is divided in 10000 pixels
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Regularized least squares reconstruction

A=10"2 A=10" A=1
IEM EM =
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Regularized data fitting
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Motivation for regularization

» consider data fitting model (of relationship y = f(x))

F@) = 01f100) + -+ + fy ()
with f1(x) = 1
> 6; is the sensitivity of f (x) to fi(x)
» so large 6; means the model is very sensitive to f;(x)
» @) is an exception, since f;(x) = 1 never varies

> so, we don't want 6,,...,0, to be too large
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Regularized data fitting

» suppose we have training data x(, ... x®™ D @)
> express fitting error on data set as A6 — y

> reqularized data fitting. choose 6 to minimize
146 = YII* + 41162, 1I°

» A > 0is the regularization parameter

> for regression model § = X’ 8 + v1, we minimize
IX" B +v1=ylI* + Al BII°

» choose A by validation on a test set
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Example

» solid line is signal used to generate synthetic (simulated) data
» 10 blue points are used as training set; 20 red points are used as test set
» we fit a model with five parameters 61, ..., 05:

4
f(x) =01+ Z Or+1 cos(wix + Py) (with given wy, ¢x)
k=1
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Result of regularized least squares fit

RMS error versus A Coefficients versus A
! 1 { {
n — Train |
—— Test
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A A
» minimum test RMS error is for A around 0.08
> increasing A ‘shrinks’ the coefficients 6, ..., 65
» dashed lines show coefficients used to generate the data
» for A near 0.08, estimated coefficients are close to these ‘true’ values
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