16. Constrained least squares



Outline

Linearly constrained least squares
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Least squares with equality constraints

» the (linearly) constrained least squares problem (CLS) is

minimize  ||Ax — b||?
subjectto Cx=d

» variable (to be chosen/found) is n-vector x

» m X n matrix A, m-vector b, p X n matrix C, and p-vector d are problem
data (i.e., they are given)

> ||Ax — b||? is the objective function
» Cx = d are the equality constraints
» xis feasible if Cx = d

> % is a solution of CLS if Ck = d and ||A% — b||*> < ||Ax — b]|? holds for any
n-vector x that satisfies Cx = d
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Least squares with equality constraints

» CLS combines solving linear equations with least squares problem

> like a bi-objective least squares problem, with infinite weight on second
objective ||Cx — d||?
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Piecewise-polynomial fitting

> piecewise-polynomial f has form

p(x) =01 + O0rx + O3x% + 04x° x < a
q(x) = 05 + Ogx + 0:x* + Ogx° x> a

flx) = {

(a is given)

> we require p(a) = q(a), p'(a) = q'(a)

> fit f to data (x;,y;), i = 1,...,N by minimizing sum square error

N
Z (xi) — )71

i=1

> can express as a constrained least squares problem
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Example

A

J(x)
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Piecewise-polynomial fitting

» constraints are (linear equations in 6)

01 + Ora + 03a° + 0,a° — 05 — Oga — 070> — Oga® = 0O
0, + 203a + 304a° — O — 20-a — 30ga® = O

> prediction error on (x;,y;) is al @ — y;, with

( ) _ (l,Xi,Xl-z,X?,0,0,0,0) X; <a
ap)j = ((),0,0,0,l,xi,xiz,x?) X; > a

> sum square error is ||A6 — y||2, where aiT are rows of A
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Outline

Least norm problem
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Least norm problem

» gpecial case of constrained least squares problem, with A =1, =10

> least-norm problem:.
minimize  ||x||?
subjectto Cx=d

i.e., find the smallest vector that satisfies a set of linear equations
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Force sequence

> unit mass on frictionless surface, initially at rest
» 10-vector f gives forces applied for one second each

» final velocity and position are

VI = fit it +fio
pi = (19/2)fi + A7/2)fr + - - + (1/2)f10
> let’s find f for which v = 0, p'™ =1

> f°° = (1,-1,0,...,0) works (called ‘bang-bang’)
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Force

Bang-bang force sequence
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Least norm force sequence

> let’s find least-norm f that satisfies p™ = 1, v" = 0

> |east-norm problem:

minimize  ||f|?
11 - 1 17,0
19/2 17/2 --- 3/2 1/2 S = 1

subject to

with variable f

> solution £ satisfies ||f™™||> = 0.0121 (compare to ||f°°||> = 2)
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Least norm force sequence
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Outline

Solving the constrained least squares problem
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Optimality conditions via calculus

to solve constrained optimization problem

minimize  f(x) = ||Ax — b||?
subjectto c¢/x=d;, i=1,...,p

1. form Lagrangian function, with Lagrange multipliers zy,. . . ,z,
L(x,z) =f(x)+ Z1(ClTx —dy)+---+ zp(c;x —d,)

2. optimality conditions are

oL oL
a_xl(-%,Z) :O, l: 1,...,”, a_zl('%’z) :O’ l

I,...,p

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.14



Optimality conditions via calculus

oL
> a—(fc, 7)) = cl.T)Ac — d; = 0, which we already knew
{j

» first n equations are more interesting:

oL “ )
o (1.0 =2 ) (ATA); - 2(ATb), +
’ j=1 J

p
zjci = 0
=1

> in matrix-vector form: 2(ATA)x - 2ATb + CTz =0
» put together with Cx = d to get Karush—Kuhn—Tucker (KKT) conditions

ERIBRES

a square set of n + p linear equations in variables X, z

» KKT equations are extension of normal equations to CLS
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Solution of constrained least squares problem

» assuming the KKT matrix is invertible, we have

- T

» KKT matrix is invertible if and only if

C has linearly independent rows, [ Ié, ] has linearly independent columns

> impliesm+p>n,p<n

> can compute X in 2mn® + 2(n + p)° flops; order is n> flops
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Direct verification of solution

> to show that X is solution, suppose x satisfies Cx = d

» then

|Ax — b|I* = ||(Ax — AR) + (A% - b)||?
= ||JA(x=D)|I> + ||A% = b||* + 2(Ax — AD)T (A% - D)

» expand last term, using 2AY (Ax - b) = -Clz, Cx = Cx = d:

20x —ADT (A2 =b) = 2x-TAT Az -b)
= —(x-3»TcT;
= —(Cix-3)"z
= 0

> 50 [[Ax = blI> = [A(x = D)II* + |A% = bII* = [|A% - DI

» and we conclude X is solution
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Solution of least-norm problem

> least-norm problem: minimize l|x|| subjectto Cx = d
. Il .
> matrix [ C ] always has independent columns

» we assume that C has independent rows

» optimality condition reduces to

ERSINEN

c 0 Z d

» s0 % = —(1/2)CTz second equation is then —(1/2)CCTz = d

> plug z = —2(CCT)~d into first equation to get
x=clcc’y'd=C'd

where C" is (our old friend) the pseudo-inverse
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so when C has linearly independent rows:
> CTis aright inverse of C

» so for any d, & = C'd satisfies Cx = d

» and we now know: X is the smallest solution of Cx = d
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