17. Constrained least squares applications
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Portfolio optimization
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Portfolio allocation weights

» we invest a total of V dollars in n different assets (stocks, bonds, ...) over
some period (one day, week, month, ...)

» can include short positions, assets you borrow and sell at the beginning,
but must return to the borrower at the end of the period

> portfolio allocation weight vector w gives the fraction of our total portfolio
value held in each asset

> Vw; is the dollar value of asset j you hold
» 17w = 1, with negative w; meaning a short position

» w = (—0.2,0.0,1.2) means we take a short position of 0.2V in asset 1,
don’t hold any of asset 2, and hold 1.2V in asset 3
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Leverage, long-only portfolios, and cash

> leverageis L = |wi| + -+ + |w,]|
(L—1)/2 is also sometimes used)

» L = 1 when all weights are nonnegative (‘long only portfolio’)

» w = 1/n is called the uniform portfolio

» we often assume asset n is ‘risk-free’ (or cash or T-bills)

> SO w = e, means the portfolio is all cash
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>

Return over a period

r; is the return of asset j over the period
7; is the fractional increase in price or value (decrease if negative)
often expressed as a percentage, like +1.1% or —2.3%

full portfolio return is

where V7 is the portfolio value at the end of the period

if you hold portfolio for ¢ periods with returns ry,...,r; value is
Viei=Vill+rp)(+r)---(1+r)

portfolio value versus time traditionally plotted using Vi = $10000
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Return matrix

» hold portfolio with weights w over T periods

> define T X n (asset) return matrix, with R,; the return of asset j in period ¢
» row f of Ris TftT , Where 7, is the asset return vector over period ¢

» column j of R is time series of asset j returns

» portfolio returns vector (time series) is T-vector r = Rw

> if last asset is risk-free, the last column of R is x1, where ™ is the
risk-free per-period interest rate
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Portfolio return and risk

> 1 is time series (vector) of portfolio returns
» average return or just return is avg(r)
> risk is std(r)

> these are the per-period return and risk

» for small per-period returns we have

Vieir = Vill+r)---(1+rp)
V1+V1(I’1+'°°+I’T)
= Vi +Tavg(r)V;

%

> SO return approximates the average per-period increase in portfolio value
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Annualized return and risk

» mean return and risk are often expressed in annualized form (i.e., per year)

> if there are P trading periods per year
annualized return = P avg(r), annualized risk = VP std(r)

(the squareroot in risk annualization comes from the assumption that the
fluctuations in return around the mean are independent)

» if returns are daily, with 250 trading days in a year

annualized return = 250 avg(r), annualized risk = V250 std(r)
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Portfolio optimization

» how should we choose the portfolio weight vector w?

» we want high (mean) portfolio return, low portfolio risk

» we know past realized asset returns but not future ones
» we will choose w that would have worked well on past returns

» ... and hope it will work well going forward (just like data fitting)
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Portfolio optimization

minimize  std(Rw)? = (1/T)||Rw — p1]|?

subjectto 17w =1
avg(Rw) = p

> w is the weight vector we seek

> R is the returns matrix for past returns

> Rw is the (past) portfolio return time series

> require mean (past) return p

> we minimize risk for specified value of return
» solutions w are Pareto optimal

» we are really asking what would have been the best constant allocation,
had we known future returns
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Portfolio optimization via constrained least squares

minimize  ||[Rw — p1||?

subject to T |w=
H p

» 1 = R"1/T is n-vector of (past) asset returns
> o is required (past) portfolio return

> an equality constrained least squares problem, with solution

-1

w 2R'TR 1 4 20T u
21 | = 1 0 0 1
22 u 0 0 0
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Optimal portfolios

» perform significantly better than individual assets

> risk-return curve forms a straight line

» one end of the line is the risk-free asset

> two-fund theorem: optimal portfolio w is an affine function of p

-1 -1

W 2R'TR 1 u 0 2R'TR 1 4 2T u
z =1 1 0 0 1 +p| 1T 0 O 0
2 ul 0 0 0 ul 0 0 1
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The big assumption

> now we make the big assumption (BA):

FUTURE RETURNS WILL LOOK SOMETHING LIKE PAST ONES

— you are warned this is false, every time you invest
— it is often reasonably true
— in periods of ‘market shift’ it's much less true

> if BA holds (even approximately), then a good weight vector for past
(realized) returns should be good for future (unknown) returns

> for example:

— choose w based on last 2 years of returns
— then use w for next 6 months
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Example

20 assets over 2000 days
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Pareto optimal portfolios

Annualized return
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Five portfolios

Return Risk
Portfolio Train Test Train Test Leverage
risk-free 0.01 0.01 0.00 0.00 1.00
o =10% 0.10 0.08 0.09 0.07 1.96
o =20% 0.20 0.15 0.18 0.15 3.03
o =40% 040 0.30 0.38 0.31 5.48
1/n (uniform weights) 0.10 0.21 0.23 0.13 1.00

> train period of 2000 days used to compute optimal portfolio

> test period is different 500-day period
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Total portfolio value
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Outline

Linear quadratic control
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Linear dynamical system

Xev1 = Axe + By, yr =Gy, =12,

> n-vector x; is state at time ¢

> m-vector u; is input at time ¢

> p-vector y, is output at time ¢

> n X n matrix A; is dynamics matrix
> n X m matrix B; is input matrix

» p X n matrix C; is output matrix

> X, Uz, y; Often represent deviations from a standard operating condition
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Linear quadratic control

minimize  Jouput + PJinput

SUbjeCt to Xt+1 = Atxt + Btut, [ = 1, ce ,T -1

x| = xmlt, X7 = xdes

> variables are state sequence xi,...,xr and input sequence uy,...,ur—|
> two objectives are quadratic functions of state and input sequences:

2 2 2 2
Jouput = |IVill* + -+ lyrll” = [[Cixi|l” + - + |Crxr]]

2 2
Jinput = Nlwll* + -+ [Jur—1l

> first constraint imposes the linear dynamics equations
> second set of constraints specifies the initial and final state
> p is positive parameter used to trade off the two objectives
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Constrained least squares formulation

minimize  [|Crxy || + - - - + [|Crxr|” + pllug I + - - - + pllur—1 17

SUbjeCt to Xt+1 = At.xt + Btl/it, I = 1, R ,T -1

x| = xlnlt’ X7 = xdes

> can be written as o
minimize  ||Az — b||?
subjectto Cz=d

» vector z contains the Tn + (T — 1)m variables:

Z = (Xl,. o . ,XT,ul,. s . ,l/tT_l)
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Constrained least squares formulation

C 0| O 0
- |0 Cr| O 0 -
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Example

> time-invariant system: system matrices are constant

0.855 1.161 0.667 —-0.076
A= 0.015 1.073 0.053 |, B=| -0.139 |,
—-0.084 0.059 1.022 0.342

C = [ 0.218 -3.597 -1.683 ]

> initial condition x™t = (0.496,—0.745,1.394)
> target or desired final state x¢ = 0

» T =100
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Optimal trade-off curve
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Three points on the trade-off curve
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Linear state feedback control

> linear state feedback control uses the input
l/tt:th, t:1,2,...

» K is state feedback gain matrix
» widely used, especially when x; should converge to zero, T is not specified

> one choice for K solve linear quadratic control problem with x4 = 0

» solution u; is a linear function of X, so u; can be written as
Uy = lel’llt

> columns of K can be found by computing u; for x™ = ¢4,. .., e,
> use this K as state feedback gain matrix
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Example

0.1

State feedback

s 0 = 0.2 Optimal N
Optimal
01| | | State feedback ™
| | | |
0 50 . 100 150 0 50 . 100 150
» system matrices of previous example
> blue curve uses optimal linear quadratic control for T = 100
> red curve uses simple linear state feedback u; = Kx;
17.26
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Outline

Linear quadratic state estimation
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State estimation

> linear dynamical system model:
Xt+1 = A[Xt + Btwta Vi = Ct.xt + Vv, I = 1,2, ce

> X, is state (n-vector)

> vy, IS measurement (p-vector)

> W, iS input or process noise (m-vector)

> V; IS measurement noise or measurement residual (p-vector)
» we know A;, B;, C;, and measurements yi,...,yr

> Ww;,V; are unknown, but assumed small

> State estimation: estimate/guess x1,...,x7
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Least squares state estimation

minimize  Jmeas + AJproc
subjectto  x;1 =Ax;+Bwy, t=1,...,T -1

» variables: states xi,...,x7r and input noise wq,...,wr_;

> primary objective Jyeas IS SUM of squares of measurement residuals:
Jmeas = 1C1x1 = 111> + -+ + | Crxr = yrll?
meas — 1X1 — V1 TXT — VT
> secondary objective Jproc is sum of squares of process noise
2 2
Joroc = lwill” + -+ + llwr_1|]

» A > 0 is a parameter, trades off measurement and process errors
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Constrained least squares formulation

minimize  [|Cix; = y1lI* + -+ - + [|Crxr = y7lI* + AW |I* + - - + lwr_111?)
subjectto x4 =Ax; +Bwy, t=1,...,T—-1

> can be written as L
minimize  ||Az — b||?
subjectto Cz=d

» vector z contains the Tn + (T — 1)m variables:

< = (-xla' o . axTawla' > . 9WT—1)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.30



@)

Introduction to Applied Linear Algebra

Constrained least squares formulation

" C, 0 0] 0 0

0 G 01| 0 0

A= 0 0 Cr| 0 0

0 0 0 | vaI 0

0 0 0| O Var |

(A, -1 O 0 0B 0
0 A, -I 0 0|0 B
0 0 0 Ar.y =110 0

S

Boyd & Vandenberghe

]

2

QU



Missing measurements

> suppose we have measurements y, fort € 7, a subset of {1,...,T}
» measurements for r ¢ 7 are missing

» to estimate states, use same formulation but with

2
Jmeas = Z | Cix; _yt”
teT

» from estimated states X;, can estimate missing measurements

j\]l‘:Cl‘j\Cl‘a tg(iv
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Example
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» simple model of mass moving in a 2-D plane
> x; = (py,2¢): 2-vector p, is position, 2-vector z; is the velocity
> y; = Cix; + w; IS noisy measurement of position

» T =100
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Measurements and true positions
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» solid line is exact position Cyx;

» 100 noisy measurements y, shown as circles
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Position estimates

blue lines show position estimates for three values of A4
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Cross-validation

» randomly remove 20% (say) of the measurements and use as test set
» for many values of A, estimate states using other (training) measurements
» for each A, evaluate RMS measurement residuals on test set

» choose A to (approximately) minimize the RMS test residuals
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Example

80 - 5
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RMS error
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» cross-validation method applied to previous example
» remove 20 of the 100 measurements
> suggests using 1 ~ 10°
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